
Test-Time Poisoning Attacks Against Test-Time Adaptation Models

Tianshuo Cong1 Xinlei He2 Yun Shen3 Yang Zhang2

1Tsinghua University 2CISPA Helmholtz Center for Information Security 3NetApp

Abstract—Deploying machine learning (ML) models in the wild
is challenging as it suffers from distribution shifts, where
the model trained on an original domain cannot generalize
well to unforeseen diverse transfer domains. To address this
challenge, several test-time adaptation (TTA) methods have
been proposed to improve the generalization ability of the
target pre-trained models under test data to cope with the
shifted distribution. The success of TTA can be credited to
the continuous fine-tuning of the target model according to
the distributional hint from the test samples during test time.
Despite being powerful, it also opens a new attack surface, i.e.,
test-time poisoning attacks, which are substantially different
from previous poisoning attacks that occur during the training
time of ML models (i.e., adversaries cannot intervene in the
training process). In this paper, we perform the first test-
time poisoning attack against four mainstream TTA methods,
including TTT, DUA, TENT, and RPL. Concretely, we generate
poisoned samples based on the surrogate models and feed
them to the target TTA models. Experimental results show
that the TTA methods are generally vulnerable to test-time
poisoning attacks. For instance, the adversary can feed as few
as 10 poisoned samples to degrade the performance of the
target model from 76.20% to 41.83%. Our results demonstrate
that TTA algorithms lacking a rigorous security assessment
are unsuitable for deployment in real-life scenarios. As such,
we advocate for the integration of defenses against test-time
poisoning attacks into the design of TTA methods.1

1. Introduction

In recent years, machine learning (ML) has achieved
remarkable performance [23]. Nevertheless, deploying these
ML models in the real world poses a significant challenge,
as distribution shifts may occur when the training and test
datasets come from different distributions [29], [66]. Take
image classification as an example, the data used to train
the ML models are often carefully curated, e.g., selecting
the object images with a clean background and cropping
the center area of the objects. However, those models must
deal with the test images coming from a different distribu-
tion in the real world (see Figure 1), which usually leads
to degraded model performance [40]. Prior approaches to
enhancing the ML model’s generalization under distribution
shifts have focused on the training process to prompt the
target model to learn more distribution types in advance,

1. Our code is available at https://github.com/tianshuocong/TePA.

1

D
ay
tim
e

N
ig
ht
tim
e

Sn
ow
y

Figure 1: Targeting the challenge of “distribution shifts,”
test-time adaptation (TTA) methods can aid in identifying
traffic signs across diverse weather conditions.

such as leveraging a large number of labeled data [49],
novel data augmentation [26], etc. However, test data usually
comes from an unseen distribution. Consequently, target
models with fixed parameters trained on the original domain
will no longer be applicable to the diverse transfer domains,
leading to an increasing interest in the dynamic adaptation
of ML models during inference.

Test-time adaptation (TTA) is an emerging technique to
tackle distribution shifts and has been leveraged in several
real-world security-sensitive scenarios, such as autonomous
driving [33], medical diagnosis [28], etc. In TTA settings,
the test data from the transfer domain is delivered as a
data stream and the target model is updated online. In
other words, the target model only has access to the cur-
rent test data instead of the whole test dataset. This is
particularly relevant in latency-sensitive scenarios, such as
autonomous driving, which necessitate immediate prediction
of arrival data. To address these realistic constraints, various
TTA methods [33], [39], [47], [52] have been proposed to
enhance the performance of prediction by fine-tuning the
model’s parameters based on the current test data before
making predictions.

Though proven successful in improving the generaliza-
tion of ML models, TTA paradigms may introduce a new
attack surface for adversaries to tamper with the parameters
of a target model at test time by fine-tuning it with potential
malicious samples. This can directly impact the predictions
for benign samples. To explore this possibility, in this
work, we propose the first untargeted test-time poisoning
attacks (TePAs) against TTA models, i.e., an adversary aims
to degrade a TTA model’s performance at test time. Our
approach is drastically different from previous poisoning
attacks that are executed during the model’s training process,
i.e., training-time poisoning attacks (TrPAs) [7], [17], [43].
Compared to TrPAs, TePAs face the following non-trivial

https://github.com/tianshuocong/TePA

challenges: (i) TrPAs require modification access to the
target model’s training dataset, while TePAs do not poison
the training dataset nor control the training process of the
target model. (ii) For TrPAs, poisoned samples are mixed
with clean training samples where they can be learned in
multiple epochs by the model and become more mem-
orable. However, considering effectiveness and efficiency,
TTA methods usually update the model using one epoch
based on each arrival of test data hence a different setting
for TePAs. (iii) In TePAs, poisoned and benign samples
are in the same pipeline, and the model is in a state of
dynamic adjustment. Therefore, the poisoning effectiveness
is also affected by the benign samples. (iv) Since TePAs
are test-time attacks, the adversary must take the query
budget into account to maintain the attack’s stealthiness. (v)
To avoid the target models “forgetting” the original task,
TTA methods usually only update part parameters of the
model. However, for TrPAs, the poisoned samples are used
to update the whole model parameters. In summary, these
differences make TePAs harder to succeed than TrPAs.
Our Work. In this paper, we take the first step toward
understanding the TePAs against TTA models and the plau-
sible countermeasures. Our study aims to demonstrate that
the current TTA methods are prone to TePAs. Considering
their use in safety-critical applications where a deteriora-
tion in their efficacy could result in severe consequences,
exposing the model modification right to the adversaries is
irresponsible, and taking into account TePAs during TTA
methods design becomes crucial. Surprisingly, to the best
of our knowledge, no prior research has investigated the
vulnerability of TTA models with respect to TePAs.

We first systematically define the threat model of TePAs
against TTA models. The goal of the adversary is to launch
an indiscriminate poisoning attack against the target model,
resulting in its performance degradation. The adversary’s
ability is limited to the query access to the target model,
meaning that they are unable to access important details
(such as the loss value, gradients, and parameters) nor the
outputs (such as posterior or predicted label) of the target
model. Additionally, we assume that the adversary has back-
ground knowledge of the distribution of the target model’s
training dataset. This knowledge allows the adversary to
construct a surrogate model with a similar distribution
dataset. They can later generate poisoned samples based on
the surrogate model and feed them to the target model.

To better demonstrate the vulnerability of the TTA tech-
niques to TePAs, we consider four prominent TTA meth-
ods in our paper, including Test-time training (TTT) [47],
Dynamic unsupervised adaptation (DUA) [33], Test entropy
minimization (TENT) [52], and Robust pseudo-labeling
(RPL) [39]. We launch TePAs against the above TTA meth-
ods. Specifically, we propose a poisoned sample genera-
tion framework, PoiGen, which creates poisoned samples
based on a surrogate model and transfer-based adversar-
ial attacks. Our experimental results indicate that only 10
poisoned samples or a small poisoning ratio of 0.1 can
cause a 34.37% drop or a 6.13% drop in the target TTT-
model’s performance, respectively. To mitigate TePAs, we

Transfer
domain

Original
domain

Target model

Ship
Dog𝑒(#) 𝜋(#)

(a) Inference w/o TTA.

Transfer
domain

Ship

TTAmethods
TTT
DUA
TENT
RPL

B
N

Update

Update

(b) Inference w/ TTA.

Figure 2: Overview of TTA methods. (a) A target model with
fixed parameters cannot cope with distribution shifts. (b)
TTA methods can improve the target model’s performance
by adjusting the target model’s parameters.

investigate several defense mechanisms such as adversarial
training [31], bit-depth reduction [58], etc. However, our ex-
periments show that these defenses are not effective against
TePAs, which prompts the need for more effective defense
mechanisms.

In summary, we make the following contributions:

• We propose the first test-time poisoning attacks
against four TTA methods, including TTT, DUA,
TENT, and RPL.

• Empirical evaluations show that our attacks are ef-
fective in degrading the target model’s performance
even with limited poisoned samples and small frac-
tions of poisoned data.

• To mitigate the attacks, we investigate four defense
mechanisms and find that none of them are effective
to defend against the proposed TePAs.

2. Background

2.1. Preliminaries

Notations. We use f : x ∈ [0, 1]D → RC to denote a
C-class classification model, where x is the input (such as
an image) and D is the input size. f(x) = [f1, ..., fC] is
the output logits vector. p(x) = [p1, ..., pC] = σ(f(x)) is
the confidence vector where σ(·) is the softmax function
and pj = p(j|x) is the prediction probability on the j-th
class. Then the final prediction can be calculated by z =
argmaxj=1,...,C pj .
Overall Goal of TTA. An illustration of TTA methods is
shown in Figure 2. A target model f which is trained on
the original domain Dori = {x ∼ P (x)} does not generalize
well to a different transfer domain Dtrans = {x ∼ Q(x)}
(Q(x) ̸= P (x)) due to distribution shifts [29]. TTA meth-
ods aim to improve the performance of the target model
f by updating its parameters at test time to cope with
such distribution shifts. In essence, f can be split into
a feature extractor e(·) and a linear classifier π(·), i.e.,
f(x) = π(e(x)) where h = e(x) ∈ Rd is the feature vector.

Different TTA methods update different parts of the target
model to attain the above goal. For instance, TTT updates
the feature extractor e(·) at test time. DUA, TENT, and RPL
update the parameters in the batch normalization (BN) layers
[27]. More details can be found in Section 2.2.
Test-Time Behavior of TTA. It is important to note that
the target model does not have access to the whole test
samples which are from the transfer domain. Note that under
TTA assumptions, the test samples come in sequential order,
i.e., x0 ← · · ·xt ← · · · where xt denotes the test data at
timestamp t. The target model f will be adapted by xt to
f t using TTA methods (See Figure 3). That is, it can only
process the current arrived test data instead. For TTT and
DUA, the test data come in a “point-by-point” manner, i.e.,
xt stands for a single image. For TENT and RPL, the test
data come in a “batch-by-batch” manner, i.e., xt = {xt

i}Bi=1
stands for a batch of test samples where B is the batch size.
The technical details are outlined below.

2.2. TTA Methods

TTT [47]. As a classical TTA method, TTT has been
widely used in the real world [4], [18], [28]. Briefly, TTT
updates the feature extractor based on a self-supervised
learning (SSL) task at test time, in turn, adapting to the
distribution shifts on-the-fly. The overview of TTT is shown
in Figure 15.

During training time, TTT requires a Y-structured model
as the target model. For instance, the training process of
TTT can be considered as a multi-task learning problem [8],
which jointly learns from two tasks (i.e., a main task and
an auxiliary task). The main task is a classification task,
and the cross-entropy loss is applied (denoted as Lm). The
auxiliary task is an SSL task, i.e., rotation prediction [13].
Concretely, it rotates each training image into 0, 90, 180, and
270 degrees first and then predicts the rotation angle (i.e.,
a 4-class classification problem). We denote the SSL task
loss function as Ls. As shown in Figure 15, the TTT model
has a Y-structure architecture with a shared feature extractor
e(x; θe) and two branches πm(x; θm) and πs(x; θs), where
πm is used for the main task and πs is used for the auxiliary
task. Given a training sample, TTT first feeds it into e(x; θe)
to obtain its feature vector h. Then, h is fed into πm and
πs to calculate the Lm and Ls, respectively. The total loss
function for training the Y-structured target model f(x; θ)
can be thus defined as

min
e,πs,πm

1

N

N∑
i=1

(Lm(xi, yi; e, πm) + Ls(xi; e, πs)), (1)

where {(xi, yi), i ∈ N} is the training data, and θ∗ =
(e∗, π∗

s , π
∗
m) are the optimized parameters of Equation 1.

During inference, TTT adapts the model based on the
test data first and then makes a prediction using the up-
dated model. Concretely, TTT updates e(x; θe) and πs(x; θs)
based on the SSL task Ls, and πm(x; θm) is fixed through-
out. At t = 0, the model’s initial state is θ∗. Given x0, TTT

first fine-tunes its feature extractor and auxiliary branch by
minimizing Ls as

e0, π0
s = min

e∗,π∗
s

Ls(x
0; e∗, π∗

s). (2)

Once getting the optimized θ0 = (e0, π0
s , π

∗
m), TTT then

makes a prediction with the updated parameters as z0 =
π∗
m(e0(x0)). Since TTT updates the model in an online

manner, the model first is initialized with (et−1, πt−1
s , π∗

m)
at time t (t > 0), and then uses the updated parameters
θt = (et, πt

s, π
∗
m) to make a prediction.2

DUA [33]. DUA is a newly proposed TTA method. Com-
pared to TTT, DUA is more lightweight because it requires
no back-propagation process and only updates < 1% pa-
rameters of the target model. Specifically, DUA aims to
update the normalization statistics of the BN layers in an
unsupervised manner and fix all remaining parameters of
the target model. Here we first introduce the BN layers and
then explain the detailed updating rule of DUA.

Batch normalization (BN) layers are widely used compo-
nents in modern deep neural networks. They are applied to
stabilize the training process by reducing internal covariate
shift [27]. In particular, once the training process is finished,
the output of BN layers can be formulated as

BN(x;µori, σ
2
ori, γori, βori) =

x− µori√
σ2
ori + ε

·γori+βori, (3)

where µori = E[Dori] and σ2
ori = Var[Dori] are nor-

malization statistics of the original domain, γori and βori

are the affine transformation parameters learned via back-
propagation during training process. These parameters are
all fixed at test time in the traditional inference paradigm.
However, recent work has found that recalculating nor-
malization statistics in the transfer domain (e.g., test-time
normalization (TTN) [41]) can improve the robustness of
the target model. Therefore, DUA continues to update the
normalization statistics in a momentum-updating manner.

An illustration of DUA is shown in Figure 16. The main
intuition of DUA is to adapt the target model by aligning the
activation distribution between the original domain and the
transfer domain. The adaptation rule of DUA is as follows:
Given a test sample xt, DUA first expands it to a small
batch xt = {xt

i}
Bdua
i=1 through data augmentation including

random horizontal flipping, random cropping, and rotation,
where xt

i is an augmented version of xt. Then, DUA updates
the values of the normalization statistics using Equation 4.

µ̂t = (1− (ρt + ξ)) · µ̂t−1 + (ρt + ξ) · µt,

σ̂2
t = (1− (ρt + ξ)) · σ̂2

t−1 + (ρt + ξ) · σ2
t ,

(4)

where µt = E[xt], σ2
t = Var[xt] are the current running

normalization statistics. We use µ̂t, σ̂t to denote the updated
statistics where µ̂0 = µori, σ̂2

0 = σ2
ori. In addition, ρt is a

decaying momentum term defined in Equation 5.

ρt = ρt−1 · w, ρ0 = 0.1. (5)

2. The inference process we introduce here is the TTT-online version.
Besides, the TTT-offline version always initializes the model with θ∗ when
meeting each test data. We focus on the online version, whose performance
has been proven that is much better than the offline version [47].

There are two hyperparameters in DUA: w ∈ (0, 1) controls
the decay of ρ, and ξ ∈ (0, ρ0) defines the lower bound of
the momentum.
TENT [52]. Compared to TTT, TENT does not require an
auxiliary task but regards prediction confidence as a self-
supervision signal. Similar to DUA, TENT also only adjusts
the parameters in the BN layers, and all other parameters of
the target model are frozen. However, besides updating the
normalization statistics µ and σ2, TENT updates the affine
parameters, γ and β, as well.

Figure 17 shows an illustration of TENT. The intu-
ition behind TENT is straightforward. Regularizing entropy
during training can assist domain adaptation [21], TENT
demonstrates that minimizing entropy during inference can
further improve the model’s adaptability. Concretely, given
a batch of test samples xt = {xt

i}
Btent
i=1 , TENT updates γ

and β by minimizing the Shannon entropy [45] as

γt ← γt−1 − ∂Ltent(x
t)/∂γt−1,

βt ← βt−1 − ∂Ltent(x
t)/∂βt−1,

(6)

where (γ0, β0) = (γori, βori), and Ltent(·) is defined in
Equation 7.

Ltent(f(x
t)) = − 1

Btent

Btent∑
i=1

C∑
j=1

p(j|xt
i) log p(j|xt

i). (7)

Specifically, TENT combines entropy minimization with
test-time normalization [41]. It replaces the normalization
statistics of the training data with the current statistics as
µt = E[xt], σ2

t = Var[xt]. Then, it uses the updated
parameters {µt, σ2

t , γt−1, βt−1} to make a prediction on xt.
Note that TENT uses one forward process for efficiency, in
turn, γt, βt will be used for predicting xt+1.
RPL [39]. As Figure 17 shows, RPL improves upon TENT
by updating the affine parameters based on the prediction
confidence, which is treated as the self-supervision label.
However, the entropy-based loss functions are sensitive to
label noise [61], [64]. Therefore, RPL uses generalized cross
entropy (GCE) to adapt the target model on the transfer
domain.

Concretely, given a batch of test data xt = {xt
i}

Brpl

i=1 ,
RPL updates the affine parameters using Equation 8.

γt ← γt−1 − ∂Lrpl(f(x
t))/∂γt−1,

βt ← βt−1 − ∂Lrpl(f(x
t))/∂βt−1,

(8)

where Lrpl is formulated by Equation 9.

Lrpl(f(x
t)) =

1

Brpl

Brpl∑
i=1

q−1(1− p(Ψ|xt
i)

q). (9)

Here Ψ = argmaxj=1,...,C p(j|xt
i), and q ∈ (0, 1] is

a hyperparameter. From Equation 9 we can observe that
limq→0 Lrpl(·) is the cross entropy loss (which has implicit
weighting scheme [64]) and limq→1 Lrpl(·) is the MAE loss
(which is noise-robustness [19]).

2.3. Poisoning Attacks

Overview. Poisoning attacks are one of the most dangerous
threats to the ML models [7], [59]. These attacks assume
that the adversary can inject poisoned samples into the ML
model’s training dataset. The assumption is reasonable as the
training datasets of ML models are usually collected from
the Internet and it is hard to detect the poisoned samples
manually given the size of the dataset. In poisoning attacks,
the adversary’s goal is to degrade model performance on a
validation dataset Dval through some malicious modifica-
tions A to the training data Dtrain as

max
A
L(Dval; θ

∗),

where θ∗ = argmin
θ
L(A(Dtrain); θ).

(10)

After being trained on the poisoned dataset A(Dtrain), the
model’s performance degrades at test time [37].
Goal. Poisoning attacks can be broadly grouped into two
categories - untargeted poisoning attacks [35], [59] and
targeted poisoning attacks [6], [43]. The goal of untargeted
poisoning attacks is to decline the overall performance of
the target model. The goal of targeted poisoning attacks is to
force the target model to perform abnormally on a specific
input class. Backdoor attacks [36] are a special case of
targeted poisoning attacks where the poisoned target models
only misclassify samples containing specific triggers.
Note. Our work is substantially different from previous
poisoning attacks. We conduct the poisoning attack during
the inference process while previous work only conducts the
poisoning attacks in the training process. Note that we focus
on the untargeted poisoning attacks in this paper.

2.4. Adversarial Attacks

Overview. Adversarial attacks aim to find a perturbed exam-
ple xadv around x which can be misclassified by the model.
Such xadv is called an adversarial example. Finding such
adversarial examples can be formulated as the following
constrained optimization problem:

xadv = argmax
x′
L(x′, y; θ),

s.t. ||x′ − x||p ≤ ϵ,
(11)

where y is the ground-truth label, || · ||p is the ℓp-norm,
and L(·) is usually the cross-entropy loss. Fast Gradient
Sign Method (FGSM) [20] is a widely used method to find
adversarial examples, it can be formulated by

xadv = x+ ϵ · sign(∇xL(f(x), y)). (12)

DIM [56]. As Equation 12 shows, FGSM needs white-box
access to the model to find adversarial examples. However,
the adversaries may only have black-box access. Therefore,
transfer-based adversarial attacks are proposed to generate
adversarial examples against a surrogate model which can
also misclassify the remote target model [14], [15], [56].

Performance Monitor

Acc AccAcc Acc Acc … …

……
! !

!! !" !# !$!$%"

" "! "" "# "$ "$%"… …

Test data stream

TTA

Adversary

&!

Surrogate
model

PoiGen

Target model poisoning

Target
model

…
Seed
image

Figure 3: Workflow of TePA. The adversary uses PoiGen to generate poisoned samples which will be fed into the test
data stream (the yellow indicating arrow). The target model f will be updated via TTA methods to f t (the blue indicating
arrow) according to the arrived test data. When meeting benign samples, the performance of f t (i.e., Acc) will be improved.
However, the poisoned samples could degrade the prediction ability of f t.

Among them, Diverse Input-FGSM (DIM) [56] is the state-
of-the-art attack method. In brief, DIM applies random re-
sizing with probability p to the input x to alleviate the over-
fitting of the adversarial examples on the surrogate model
to improve the transferability (i.e., T (x, p) in Algorithm 1).
In our paper, we integrate DIM to generate our poisoned
samples. Note that any advanced transfer-based attacks can
be integrated into our algorithm.

3. Threat Model

Adversary’s Goal. We assume that the target models (i.e.,
the models which the adversaries aim to attack) make pre-
dictions following the online TTA paradigm. For example, if
the target model uses TTT to adjust the parameters, then we
denote the target model as TTT-model. The adversary’s goal
is to degrade the target model’s performance by nudging the
model in a “wrong direction” by feeding poisoned samples
at test time. Meanwhile, the benign samples uploaded by
legitimate users and the poisoned samples fed by the adver-
saries are in the same pipeline, which means multiple users
concurrently use and update the parameters of the target
model. We use a fixed evaluation dataset to monitor the
changes in model performance.
Adversary’s Knowledge. We assume that the adversary
has three pieces of knowledge: (i) They know which TTA
method the target model uses. This assumption is realistic
since TTA methods should be publicly available so that they
can be rigorously vetted for security before deployment like
cryptanalysis. In addition, systems may eventually converge
towards certain SOTA public TTA methods. (ii) The adver-
sary knows the API where the legitimate users upload the
benign samples, hence they can upload the poisoned samples
to covertly poison the target model. (iii) They may collect
a surrogate dataset that comes from a similar distribution of
the target model’s training dataset. Notably, different from
the previous poisoning attacks, the adversaries do not know
the architecture or training hyperparameters of the target
model. (iv) They are unable to tamper with the training data
or intervene in the target model’s training process. (v) They
also do not have access to the model parameters of the target

model at any time. (vi) They cannot control the order of the
poisoned samples reaching the target model, e.g., the target
TTA model may have been updated by an unknown number
of test samples.
Adversary’s Capability. The surrogate dataset enables the
adversary to train a surrogate model, which can then be
utilized to generate poisoned samples. However, it should
be noted that the adversary cannot obtain information about
the gradient of the loss from the target model and can only
resort to transfer-based adversarial attacks, as demonstrated
in previous works such as [32], [56]. That is, they can only
feed these poisoned samples to the target TTA-online model.
Moreover, since the test data come to the target TTA models
“point-by-point” or “batch-by-batch,” the adversaries can set
up the poisoned samples in advance to mix them with the
benign samples.
Attack Challenge. TePAs lead to the following non-trivial
challenges. Previous poisoning attacks assume that the target
model is trained on fixed poisoned training data or its
training process is controlled by the adversary. However,
none of the assumptions are valid in the case of TTA. First,
the adversary cannot poison the training data and does not
control the training process of the target TTA model. They
only have query access to the target TTA model. Secondly,
a TTA model updates its parameters for each query sample
once deployed. Even if the adversaries possess knowledge
of the training data and process, such as hyperparameters
like training epochs and batch size, they cannot assume that
the target model is newly trained. Finally, the adversaries
must take the budget (i.e., the number of poisoned samples)
into consideration to stay stealthy and avoid detection. Nev-
ertheless, we show in our evaluation (see Section 5) that
our attacks are effective with a limited amount or limited
fraction of poisoned samples.

4. Attack Methodology

4.1. Attack Overview

In general, TePAs consist of three steps - surrogate
model training, poisoned sample generation, and target

model poisoning. The overall workflow of TePAs is illus-
trated in Figure 3.

• Surrogate Model Training. The goal of this step is
to construct a surrogate model fs with the surrogate
dataset as a stepping stone to launch the attack. It
is essential to note that the adversary operates under
the assumption that the target model’s architecture is
unknown and the distribution of the shadow dataset
resembles that of the target model’s training dataset.
Moreover, the surrogate model’s training process is
independent of the target model and does not need
any supervision information from the target model,
such as query results.

• Poisoned Sample Generation. In this step, we
introduce PoiGen, a poisoned sample generation
framework. The details of PoiGen are summarized
in Algorithm 1. The goal of PoiGen is to create a
poisoned sample x′ from a clean seed image xin that
aims to decrease the inference performance of the
target model. Depending on the target TTA method
A, PoiGen uses different generation strategies (e.g.,
different loss function Lpoi) to generate poisoned
samples with stronger transfer properties. We stress
that the poisoned sample generation process does not
interact with the target model, which enhances the
stealthiness of our attack. Also, PoiGen allows the
attacker to plug in different advanced transfer-based
adversarial attack algorithms.

• Target Model Poisoning. The goal of this step is to
employ different poisoning strategies to deliver the
poisoned samples to the target model. In this step,
the adversary must take various factors, such as the
budget (i.e., the number of poisoned samples) and
the order (i.e., how the poisoned samples and the
benign samples are mixed at inference time) into
consideration to stay stealthy and avoid detection.

In conclusion, the core process of TePAs is PoiGen
(poisoned sample generation). To attack different TTA mod-
els, PoiGen chooses different loss functions Lpoi and at-
tack strategies. We outline how PoiGen generates poisoned
samples for four different TTA models in the rest of this
section. Note that since poisoning strategies are tightly cou-
pled with performance evaluation, we defer the description
of poisoning strategies in Section 5.5.

4.2. TePA Against TTT

Recall that in the inference process, TTT fine-tunes the
feature extractor e(·) and the SSL task branch head πs(·)
through the rotation prediction loss Ls. Our intuition is that
if e(·) and πs(·) learn the wrong information about the
rotation from the test samples together, the feature extractor
will be guided in incorrect directions, causing the model to
lose the information learned from the training data. Previous
work [13] also shows that the rotation prediction accuracy
is strongly linked to the classification accuracy of the pri-
mary task. Therefore, the adversary can generate poisoned

Algorithm 1: PoiGen
Input: Seed image xin, surrogate model fs, the

target TTA method A, loss function Lpoi,
the perturbation budget ϵ, updating step α;

Output: Poisoned sample x′;
1 Def DIM(x, y, f , L, ϵ):
2 g = 0;
3 µ = 1;
4 p = 0.5;
5 for j = 1 to Iadv do
6 x = T (x, p);
7 if y is not None then
8 g = µ · g + ∇xin

L(f(x),y)

||∇xin
L(f(x),y)||1 ;

9 else
10 g = µ · g + ∇xin

L(f(x))

||∇xin
L(f(x))||1 ;

11 xadv = xin + α · sign(g);
12 δ = Clip(xadv − xin;−ϵ,+ϵ);
13 x = Clip(xin + δ; 0, 1);

14 return x.

15
16 Main function PoiGen (A, xin, fs, Lpoi, ϵ):
17 if A is TTT then
18 x′ = xin;
19 for i = 1 to Iiter do
20 for y’ = 1 to 4 do
21 xrot = rot90(x′, y′);
22 x′ = DIM(xrot, y

′, fs,Lpoi, ϵ);

23 else if A is TENT or RPL then
24 x′ = DIM(xin, y = None, fs,Lpoi, ϵ);

25 else if A is DUA then
26 x′ = x+ ϵ · N (µ, σ2) (See Equation 13);

27 return x′.

samples according to the auxiliary loss Ls by adversarial
attacks. Specifically, the generated noise should maximize
Ls in each angle. Inspired by Universal Adversarial Pertur-
bations [34], given one original sample, the adversary may
find a universal perturbation for all its rotations.

Specifically, when attacking TTT-models (Line 17-22),
PoiGen first sets Lpoi as Ls and generates adversarial
perturbation for each rotation xrot. Here rot90(x, j) stands
for rotating the image x by 90× j degrees (Line 21). Given
an image rotated by 0 degrees and its corresponding rotation
label y′ is 1, PoiGen first computes the loss Lpoi and
backpropagates the gradient that maximizes the loss to the
original image (Line 8). Based on this gradient, PoiGen
obtains the generated noise δ (Line 12), which is added to
the clean image xin, and produces a new poisoned sample
x′ (Line 13). This sample is then rotated by 90 degrees
(with a corresponding label of 2), and a new perturbation is
generated to fool the model on rotation prediction. The same

procedure is followed for rotations of 180 and 270 degrees.
After that, four perturbations are added to the image for four
rotations. To make the generated perturbation more robust,
PoiGen introduces a hyperparameter Iiter to repeat the
whole process. After generating perturbation, we consider
the adversarial examples as poisoned examples x′

ttt against
the TTT-models.

4.3. TePA Against DUA

Recall that DUA uses a momentum updating method
to fine-tune the statistical parameters in the BN layers.
However, the statistical parameters calculated from xt+1

may differ significantly from xt, and this difference may
disrupt the adaptation process of the model parameters.
Meanwhile, this disruption is persistent and continues to af-
fect the downstream test data due to the momentum design.
We show that a test sample with Gaussian noise can disrupt
the updating process of the statistical parameters. Thus, the
poisoned sample for DUA is:

x′
dua = x+ ϵdua · N (µdua, σ

2
dua), (13)

where µdua and σ2
dua control the perturbation distribution

and ϵdua controls noise intensity.
Note. We can observe that, compared to TePAs against TTT,
the generation process of x′

dua does not require a surrogate
model. Recall that the adaptation process of DUA does not
rely on any SSL tasks, nor is it based on a loss function
to adjust the target model. Therefore, the adversary does
not need a surrogate model to launch the gradient-based
adversarial attack for generating poisoned samples, which
makes the poisoning attacks cheaper and easier.

4.4. TePA Against TENT & RPL

TePA Against TENT. Recall that TENT minimizes the
entropy of the prediction to adapt the affine parameters of
the BN layers, and RPL uses GCE loss instead. We aim to
generate such following perturbation to compel the target
model to learn “wrong information” from our poisoned
samples:

∆ = argmax
δ

H(fs(x+ δ)),where ||δ||∞ ≤ ϵtent. (14)

Here H(y) = −
∑

c pc log pc is the Shannon entropy. Since
TENT uses prediction logits as the self-supervision signal,
we aim to generate such adversarial examples to make the
entropy of the logits much larger than normal. Therefore,
PoiGen first sets Lpoi as H. Meanwhile, compared to
TePAs against TTT-models, we do not need a label to attack
TENT-models, so PoiGen sets y =None and uses DIM
to maximize H (Line 10). Therefore, as shown in Line 24
of Algorithm 1, the final poisoned samples against TENT-
models can be formulated as

x′
tent = DIM(xin, y = None, fs,H, ϵtent). (15)

TePA Against RPL. We note that the adversarial examples
generated by Equation 15 can also be used as poisoned sam-
ples to poison RPL-models. This is because as entropy H
increases, p(Ψ|x) decreases, which causes Lrpl to increase
as well. Therefore, we set

x′
rpl = x′

tent. (16)

5. Evaluation

5.1. Experimental Setup

Datasets. We use 5 datasets to conduct our experiments,
including CIFAR-10 [1], CIFAR-100 [1], CIFAR-10-C [2],
CIFAR-100C [3], and CINIC-10 [11]. CIFAR-10/100-C
are the corrupted datasets of CIFAR-10/100 that contain
5 different levels of corruption, in which level-5 is the
highest corruption severity. Specifically, we choose four
corruptions to evaluate the target model’s performance: Ori,
Gls-5, Fog-5, and Con-5. “Ori” means the original dataset
(i.e., the images from CIFAR-10/100), “Gls-5” stands for
“Glass blur” with corruption severity level 5, and “Fog”
(“Con”) means the “Fog” (“Contrast”) corruption. To train
the target models, we choose CIFAR-10 and CIFAR-100 as
the training datasets Dt. Meanwhile, the CINIC-10 dataset
contains images that are from CIFAR-10 and ImageNet [12].
We use the images from ImageNet as the surrogate dataset
Ds to train the surrogate model, which makes our poisoning
attacks more realistic since Dt ∩ Ds = ϕ. The detailed
descriptions of the above 5 datasets are shown in Section A
of Appendix.
Target Model. We use ResNet-18 and ResNet-50 as the ar-
chitectures of the target models. We use C10-Res18 (C100-
Res18) to denote the ResNet-18 model trained on CIFAR-10
(CIFAR-100). Finally, we could get 4 target models: C10-
Res18/50 and C100-Res18/50, which will be used as the
target models for DUA, TENT, and RPL. We train the above
ResNets using public implementations.3 Meanwhile, recall
that the training process of TTT needs two learning tasks.
Therefore, we transform the ResNets into Y-structure. For
instance, we first choose the splitting point in ResNets, the
parameters after the splitting point will be copied to form
two identical branches: One is used for the main task and
the other is for the auxiliary task. We choose the end of
the 4th resblock (3rd resblock) in ResNets as the splitting
point when Dt is CIFAR-10 (CIFAR-100). Consequently,
we get 4 target models as TTT-models: C10-Res18/50@Y4
and C100-Res18/50@Y3, where Y3/Y4 means the split-
ting point is the end of the 3rd/4th resblock. We run the
official training implementation4 to train the target TTT-
models. Meanwhile, we replace BN with Group Normal-
ization (GN) [54] in the ResNets following [47] for better
performance of TTT-models.
Surrogate Model. As mentioned above, we use the images
from ImageNet (resized to 32 × 32 × 3) as our surrogate

3. https://github.com/huyvnphan/PyTorch CIFAR-10.
4. https://github.com/yueatsprograms/ttt cifar release.

https://github.com/huyvnphan/PyTorch_CIFAR-10
https://github.com/yueatsprograms/ttt_cifar_release

Ori Gls-5 Fog-5 Con-50

20

40

60

80

100

A
cc

ur
ac

y
(%

)

TTT-0

TTT-50

TTT-500

TTT-1000

(a) TTT

Ori Gls-5 Fog-5 Con-50

20

40

60

80

100

A
cc

ur
ac

y
(%

)

DUA-10

DUA-20

DUA-30

DUA-100

(b) DUA

Ori Gls-5 Fog-5 Con-50

20

40

60

80

100

A
cc

ur
ac

y
(%

)

TENT-0

TENT-5

TENT-10

TENT-20

(c) TENT

Ori Gls-5 Fog-5 Con-50

20

40

60

80

100

A
cc

ur
ac

y
(%

)

RPL-0

RPL-5

RPL-10

RPL-20

(d) RPL

Figure 4: Utility of TTA methods. The target model is ResNet-18 trained on CIFAR-10. The x-axis represents different
evaluation datasets. The y-axis represents the prediction accuracy.

dataset to train surrogate models. When the target models are
TTT-models, we choose Res18@Y3 as the architecture of
the surrogate model. Otherwise, when the target models are
TENT-/RPL-models, we choose VGG-11 as the surrogate
model, which is trained by a different public implementa-
tion5 than training the target models.
Hyperparameters of TTA Methods. TTT uses an SGD
optimizer to update the parameters of the target models for 1
epoch, the learning rate is 0.001. For DUA, we set ω = 0.94,
ξ = 0.005, and Bdua = 64. For TENT and RPL, the batch
size for the coming test samples is Btent = Brpl = 200, and
they both use an SGD optimizer with a momentum factor of
0.9 to update the affine parameters for 1 epoch. Meanwhile,
we set q = 0.8 for RPL.
Evaluation Metric. To monitor the prediction ability of
the target model f t promptly, we use an evaluation dataset
De which contains 1,000 evaluation samples to evaluate
the model’s performance. The top-1 prediction accuracy
(denoted as Acc) is the performance indicator. We follow
the evaluation methods from the official implementation of
the TTA methods. For instance, TTT,6 TENT,7 and RPL8

all adapt the models once there comes new evaluation data.
Therefore, we input evaluation data to adjust the model first
and then make predictions. After each prediction, we reset
the model to f t for the next prediction. However, DUA
adjusts the model in an online manner with a few unlabeled
samples and then freezes the model to make predictions.9
Therefore, we also freeze the model when we evaluate it
on our 1,000 evaluation samples. Note that the evaluation
samples in De suffer from the same corruption, and we will
use different corrupted De to evaluate the target model’s
performance, i.e., Ori, Gls-5, Fog-5, and Con-5.
Hyperparameters of TePAs. We set the perturbation budget
ϵ = 32/255 (ℓ∞-norm) for default. For TePA against TTT-
models, we set Iiter = 3 and Iadv = 20. Meanwhile, we
use a staged updated step strategy. For instance, α = 4/255
when Iadv ∈ [0, 10), and α = 2/255 when Iadv ∈ [10, 15),
otherwise, α = 1/255. For TePA against DUA-models, we
set µdua = 0.0 and σ2

dua = 0.8. For TePA against TENT-
models and RPL-models, we set Iadv = 200 and α = 1/255.

5. https://github.com/kuangliu/pytorch-cifar.
6. https://github.com/yueatsprograms/ttt cifar release.
7. https://github.com/DequanWang/tent.
8. https://github.com/bethgelab/robustness.
9. https://github.com/jmiemirza/DUA.

5.2. Utility of Frozen Target Model

We first evaluate the prediction ability of the frozen
target models. We use four kinds of evaluation datasets - Ori,
Gls-5, Fog-5, and Con-5 - to evaluate the utility of our eight
target models. The results are shown in Table 1. We observe
the following two phenomenons: (i) Deep neural networks
(DNNs) cannot be robust enough on distribution shifts. Take
C10-Res18 as an example, when there is no corruption
on evaluation samples, the Acc is 93.00%. However, the
model’s performance drops to 58.10% (64.80%) when De

is Gls-5 (Fog-5). (ii) Y-structured DNNs are more robust
than naive DNNs [25]. For example, the Acc of C10-Res18
on Con-5 is 19.20%, while the Acc is 83.60% for C10-
Res18@Y4. However, Y-structured DNNs are still not robust
enough on all corruptedDe, e.g., the Acc of C10-Res18@Y4
is 61.90% on Gls-5, which is ∼ 30% lower than that on Ori.
Therefore, we need TTA methods to further improve the
model’s performance on distribution shifts. Note that the
results in Table 1 are used as the baseline when discussing
the enhancement capabilities of TTA methods and the attack
performance of TePAs.

TABLE 1: The utility of the frozen target model (%).

Dataset Target Model Acc

Ori Gls-5 Fog-5 Con-5

CIFAR-10

C10-Res18@Y4 93.70 61.90 71.40 83.60
C10-Res50@Y4 92.80 56.60 68.00 78.50
C10-Res18 93.00 58.10 64.80 19.20
C10-Res50 94.20 62.60 70.80 24.90

CIFAR-100

C100-Res18@Y3 71.40 20.90 41.40 48.70
C100-Res50@Y3 65.20 24.70 31.40 30.80
C100-Res18 73.50 24.60 32.60 11.50
C100-Res50 76.20 25.50 38.30 12.30

5.3. Utility of TTA Methods

We now show that TTA methods can improve the target
models’ performance on distribution shifts. To better demon-
strate the process of improving model performance with the
TTA method, we divide the inference phase into two stages:
the “warming-up phase” and the “evaluation phase.”

In the warming-up phase, the model will be updated
by the coming test samples from the warming-up dataset
Dw through TTA methods. Assuming the initial state of the
target model is TTA-0, through being updated by t (batches

https://github.com/kuangliu/pytorch-cifar
https://github.com/yueatsprograms/ttt_cifar_release
https://github.com/DequanWang/tent
https://github.com/bethgelab/robustness
https://github.com/jmiemirza/DUA

0 20 40 60 80 100
80

85

90

95

O
ri

gi
na

l
A

cc
(%

)

20

40

60

80

C
or

ru
pt

ed
A

cc
(%

)Ori

Gls-5

Fog-5

Con-5

(a) C10-Res18@Y4
0 20 40 60 80 100

50

60

70

80

90

O
ri

gi
na

l
A

cc
(%

)

20

40

60

80

C
or

ru
pt

ed
A

cc
(%

)

(b) C10-Res50@Y4
0 20 40 60 80 100

60

70

80

O
ri

gi
na

l
A

cc
(%

)

20

40

60

C
or

ru
pt

ed
A

cc
(%

)

(c) C100-Res18@Y3
0 20 40 60 80 100

60

62

64

66

O
ri

gi
na

l
A

cc
(%

)

20

24

28

32

C
or

ru
pt

ed
A

cc
(%

)

(d) C100-Res50@Y3

Figure 5: TePAs Against TTT-models. The left y-axis and the right y-axis represent the prediction accuracy on the original
and corrupted evaluation datasets, respectively. The x-axis represents the number of poisoned samples.

0 20 40 60 80 100

60

80

O
ri

gi
na

l
A

cc
(%

)

0

20

40

60
C

or
ru

pt
ed

A
cc

(%
)Ori

Gls-5

Fog-5

Con-5

(a) C10-Res18
0 20 40 60 80 100

50

60

70

80

90

O
ri

gi
na

l
A

cc
(%

)

0

20

40

60

80

C
or

ru
pt

ed
A

cc
(%

)

(b) C10-Res50
0 20 40 60 80 100

20

40

60

80

O
ri

gi
na

l
A

cc
(%

)

0

10

20

30

40

C
or

ru
pt

ed
A

cc
(%

)

(c) C100-Res18
0 20 40 60 80 100

0

20

40

60

80

O
ri

gi
na

l
A

cc
(%

)

0

10

20

30

40

C
or

ru
pt

ed
A

cc
(%

)

(d) C100-Res50

Figure 6: TePAs Against DUA-models. The left y-axis and the right y-axis represent the prediction accuracy on the original
and corrupted evaluation datasets, respectively. The x-axis represents the number of poisoned samples.

0 5 10 15 20 25 30 35 40
80

84

88

92

96

O
ri

gi
na

l
A

cc
(%

)

50

60

70

80

90

C
or

ru
pt

ed
A

cc
(%

)Ori

Gls-5

Fog-5

Con-5

(a) C10-Res18
0 5 10 15 20 25 30 35 40

70

80

90

O
ri

gi
na

l
A

cc
(%

)

50

60

70

80

90

C
or

ru
pt

ed
A

cc
(%

)

(b) C10-Res50
0 5 10 15 20 25 30 35 40

40

50

60

70

80

O
ri

gi
na

l
A

cc
(%

)

30

40

50

60

C
or

ru
pt

ed
A

cc
(%

)

(c) C100-Res18
0 5 10 15 20 25 30 35 40

50

60

70

80

O
ri

gi
na

l
A

cc
(%

)

30

40

50

60

C
or

ru
pt

ed
A

cc
(%

)

(d) C100-Res50

Figure 7: TePAs Against TENT-models. The left y-axis and the right y-axis represent the prediction accuracy on the original
and corrupted evaluation datasets, respectively. The x-axis represents the number of poisoned samples.

0 5 10 15 20 25 30 35 40
85

90

95

O
ri

gi
na

l
A

cc
(%

)

60

80

C
or

ru
pt

ed
A

cc
(%

)Ori

Gls-5

Fog-5

Con-5

(a) C10-Res18
0 5 10 15 20 25 30 35 40

85

90

95

O
ri

gi
na

l
A

cc
(%

)

60

80

C
or

ru
pt

ed
A

cc
(%

)

(b) C10-Res50
0 5 10 15 20 25 30 35 40

65

66

67

68

69

70

O
ri

gi
na

l
A

cc
(%

)

40

60

C
or

ru
pt

ed
A

cc
(%

)

(c) C100-Res18
0 5 10 15 20 25 30 35 40

65

70

75

O
ri

gi
na

l
A

cc
(%

)

40

60

C
or

ru
pt

ed
A

cc
(%

)

(d) C100-Res50

Figure 8: TePAs Against RPL-models. The left y-axis and the right y-axis represent the prediction accuracy on the original
and corrupted evaluation datasets, respectively. The x-axis represents the number of poisoned samples.

of) test samples, the model comes to TTA-t. Then, if we
would like to monitor the performance of TTA-t, we should
input TTA-t to the evaluation phase to calculate Acc. Note
that the incoming test samples are independent and identi-
cally distributed (i.i.d.) samples as the evaluation dataset De.
For instance, if we use Gls-5 as the evaluation dataset, the
warming-up samples should also come from Gls-5. Also, we
set the Dw∩De = ϕ. Through our setting, we would like to
evaluate how much the model will be boosted by learning
distributional information from the i.i.d. samples. To fully
demonstrate the lifting power of the TTA methods, we adapt
our target models by four TTA methods, including TTT,
DUA, TENT, and RPL. The evaluation results of these four
TTA methods on ResNet-18 with CIFAR-10-C are shown
in Figure 4. The results for the ResNet-50 trained on CIFAR-
100 are shown in Figure 22.

Firstly, we can observe that the performance of the target
models can be improved by the TTA methods. Meanwhile,
as the amount of i.i.d. samples increases, the model gains

more performance improvement. For instance, from the
results shown in Figure 4a we can observe that the Acc of
TTT-0 on Fog-5 and Con-5 are 73.93% and 83.97%, respec-
tively. However, after being updated by 50 i.i.d. samples (the
model comes to TTT-50), the performances have been im-
proved to 75.17% and 84.43%. Meanwhile, the performance
could be further improved to 81.9% and 88.37% when the
model comes to TTT-1000.

Secondly, we compare DUA, TENT, and RPL together
since they adapt the same target model. Compared to DUA,
TENT and RPL both have a greater ability to enhance the
model. For example, when the target model is C10-Res18
and De is Fog-5, the Acc of TENT-10 and RPL-10 are
both higher than 80.00%, but only 76.50% for DUA-10.
This is because DUA processes one test sample at a time
while TENT and RPL require the test samples to come in
a “batch-by-batch” manner, which makes TENT and RPL
learn normalization statistics information quickly.

Thirdly, we compare TENT and RPL since they both

Time

Ori

0 10 20 30 40 50 60 70 80 90 100

Gls-5

Figure 9: The features are obtained from the evaluation dataset (1k evaluation samples) through the target TTT-model C10-
Res18@Y4. We project them into a plane using t-SNE and arrange the t-SNE results in time order from left to right.

adapt the affine parameters in the BN layers but use different
loss functions. We observe that TENT can achieve better
performance than RPL. For instance, when the target model
is C10-Res18, the Acc of RPL-40 on Ori, Gls-5, Fog-
5 and Con-5 are 91.83%, 64.87%, 83.97%, and 83.57%,
respectively, but the Acc of TENT-40 are 92.10%, 68.27%,
85.40%, and 84.27%, respectively.

5.4. TePA Against TTA Models

We here launch TePAs against TTA models. To fully
demonstrate the vulnerability of the TTA models against
TePAs, we feed poisoned samples to adapt all eight target
models and evaluate the impact on the prediction perfor-
mance. The results are shown in Figure 5, Figure 6, Figure 7,
and Figure 8.

Firstly, we can observe that regardless of the network
architecture or the dataset, our poisoned samples lead to a
significant reduction in the prediction abilities of the target
models. The performance of the model gradually decreases
as the number of poisoned samples increases. For instance,
as Figure 5a shows, when we feed 50 poisoned samples
to C10-res18@Y4, the Acc on Gls-5 drops to 30.87%,
and the Acc further drops to 26.97% with 100 poisoned
samples. Meanwhile, we can also observe that with TePAs,
the model’s performance decreases on both original and
corrupted evaluation datasets. For instance, from Figure 7c,
we can observe that when we feed 40 batches of poisoned
samples, the Acc both drop about 20% on Ori and Gls-5.
Note that we only need a few points to significantly reduce
the target model’s performance, e.g., when we feed just 10
poisoned samples, the Acc on Ori drops from 76.20% to
41.83% (Figure 6d).

Secondly, we can observe that even if the surrogate
model has a different architecture and is trained on a dif-
ferent surrogate dataset, TePAs are still effective. Recall
that we use a Res18@Y3 as the surrogate model which
is pre-trained on the ImageNet (from CINIC-10) to poison
TTT-models, whose structure and training dataset are both
different from the target C10-Res18@Y4 model. Moreover,
when poisoning C100-Res18@Y3, our surrogate dataset
only contains part of the distribution information compared
to the training dataset of the target model. When poisoning
TENT- and RPL-models, we use a VGG-11 as the surrogate
model. In short, the adversary can always generate powerful
poisoned samples based on the surrogate model even though

they do not have adequate background knowledge about the
target model.

Thirdly, through comparing Figure 7 and Figure 8, we
find that RPL is more robust against TePAs than TENT.
For instance, when the target model is C10-Res18, with 40
batches of poisoned samples, TENT’s Acc drops 12.53%
and 15.20% on Fog-5 and Con-5, respectively, and RPL’s
Acc drops 7.73% and 10.07%, respectively. In conjunction
with the discussion in Section 5.3, we can conclude that by
minimizing entropy instead of using GCE loss, TENT can
obtain a greater increase than RPL when the test samples are
i.i.d. samples; however, its performance also decreases larger
than RPL. Nevertheless, RPL cannot resist TePAs perfectly.
For instance, when we feed 40 batches of poisoned samples
(Figure 8b), Acc drops from 81.30% to 68.73% on Con-5.
t-SNE Visualization. To better demonstrate the effect of
TePAs, we feed the evaluation data (Ori and Gls-5) to the
poisoned model and visualize the features with t-Distributed
Neighbor Embedding (t-SNE) [50]. The results are shown
in Figure 9, in which different colors denote samples from
different classes. We can observe that when t = 0, the evalu-
ation samples on Ori can be well distinguished by the model,
and the clustering effect on Gls-5 is weak, i.e., some features
are close to each other. However, as poisoned samples are
incrementally introduced to the model, the features become
increasingly entangled. For instance, at t = 100, the model
exhibits a significant reduction in distinguishability between
different sample categories on Gls-5.

5.5. Impact of the Poisoning Strategies

In the threat model, we consider the adversary cannot
control the location of the poisoned samples appearing in
the test data stream. As such, we here discuss the effect
of the poisoned samples’ location on TePAs. For instance,
we focus on a relatively small attack window, in which
the adversary can inject multiple poisoned samples. We
consider three scenarios: (1) Uniformly Poisoning: Poisoned
samples appear in the test data stream “uniformly.” (2)
Warming-up before Poisoning: The target model has been
fine-tuned by several i.i.d. samples before the arrival of the
poisoned samples. (3) Warming-up after Poisoning: After the
poisoning process, the target model will be further fine-tuned
by several i.i.d. samples. In this part, we use the ResNet-18
trained on CIFAR-10 as the target model.
Uniformly Poisoning. Given a test data stream, we first
consider that each test sample has a probability P to be a

0 0.2 0.4 0.6 0.8 1.0
70

75

80

85

90

95

O
ri

gi
na

l
A

cc
(%

)

20

40

60

80

C
or

ru
pt

ed
A

cc
(%

)

Ori

Gls-5

Fog-5

Con-5

(a) TTT
0 0.2 0.4 0.6 0.8 1.0

50

60

70

80

90

O
ri

gi
na

l
A

cc
(%

)

0

20

40

60

80

C
or

ru
pt

ed
A

cc
(%

)

(b) DUA
0 0.2 0.4 0.6 0.8 1.0

80

84

88

92

96

O
ri

gi
na

l
A

cc
(%

)

50

60

70

80

90

C
or

ru
pt

ed
A

cc
(%

)

(c) TENT
0 0.2 0.4 0.6 0.8 1.0

85

90

95

O
ri

gi
na

l
A

cc
(%

)

60

80

C
or

ru
pt

ed
A

cc
(%

)

(d) RPL

Figure 10: Uniformly Poisoning. The target model is ResNet-18 trained on CIFAR-10. The left y-axis and the right y-axis
represent the prediction accuracy on the original and corrupted evaluation datasets, respectively. The x-axis represents the
probability P of being a poisoned sample for each test sample.

0 100 200 300 400
Poisoned Samples

50
00

20
00

50
0

50
0

I.
I.

D
.

S
am

pl
es

71.40 48.80 39.60 36.40 34.00

69.60 41.70 33.80 29.30 27.80

66.10 29.20 28.80 27.00 26.50

62.70 27.10 26.50 24.90 24.10

62.90 26.00 25.20 24.40 24.00

(a) TTT

0 20 50 100 500
Poisoned Samples

50
0

10
0

50
20

0
I.

I.
D

.
S

am
pl

es

66.97 66.27 65.13 62.00 44.43

66.97 66.07 65.20 62.60 44.67

66.70 65.47 64.90 61.77 44.33

65.97 63.27 60.17 56.20 43.63

58.10 52.67 48.00 46.33 42.00

(b) DUA

0 10 20 30 40
Poisoned Samples

40
30

20
10

0
I.

I.
D

.
S

am
pl

es

68.93 67.37 64.07 58.77 59.70

68.43 66.37 63.43 61.97 59.90

68.27 67.27 64.30 59.87 59.17

65.60 66.10 64.10 59.67 60.03

63.90 63.23 61.23 60.20 57.40

(c) TENT

0 10 20 30 40
Poisoned Samples

40
30

20
10

0
I.

I.
D

.
S

am
pl

es

65.63 64.77 62.87 60.07 59.83

65.27 64.53 61.90 61.40 58.33

64.87 64.00 63.43 61.03 59.60

63.93 63.20 62.83 62.43 60.47

63.90 63.37 62.57 61.27 59.97

(d) RPL

Figure 11: Warming-up before Poisoning. The target model is ResNet-18 trained on CIFAR-10. The y-axis and the x-axis
represent the number of the i.i.d. samples and the poisoned samples, respectively. We fix the evaluation dataset to Gls-5.

0 50 500 2000 5000
I.I.D. Samples

40
0

30
0

20
0

10
0

0
P

oi
so

ne
d

S
am

pl
es

24.00 22.40 49.80 66.40 71.50

24.40 24.30 52.10 67.60 70.90

25.20 29.80 55.50 68.10 71.40

26.00 29.50 57.40 67.30 71.50

62.90 62.70 66.10 69.60 71.40

(a) TTT

0 20 50 100 500
I.I.D. Samples

50
0

10
0

50
20

0
P

oi
so

ne
d

S
am

pl
es

42.00 45.37 50.17 56.10 66.17

46.33 48.93 53.53 58.63 66.67

48.00 52.03 56.47 60.73 66.60

52.67 60.70 63.30 64.47 67.27

58.10 65.97 66.70 66.97 66.97

(b) DUA

0 10 20 30 40
I.I.D. Samples

40
30

20
10

0
P

oi
so

ne
d

S
am

pl
es

57.40 57.43 59.67 59.17 60.90

60.20 60.70 62.93 61.97 63.43

61.23 63.53 63.30 65.50 65.20

63.23 64.77 66.60 66.73 65.83

63.90 65.60 68.27 68.43 68.93

(c) TENT

0 10 20 30 40
I.I.D. Samples

40
30

20
10

0
P

oi
so

ne
d

S
am

pl
es

59.57 60.70 61.80 62.33 62.67

61.27 62.33 63.33 62.83 62.63

62.57 61.87 63.50 64.33 64.50

63.37 63.83 64.83 65.60 66.60

63.90 63.93 64.87 65.27 65.63

(d) RPL

Figure 12: Warming-up after Poisoning. The target model is ResNet-18 trained on CIFAR-10. The y-axis and the x-axis
represent the number of poisoned samples and the i.i.d. samples, respectively. We fix the evaluation dataset to Gls-5.

poisoned sample and a probability 1−P to be an i.i.d. sam-
ple. For TTT- and DUA-models, we feed 100 test samples
in total. For TENT- and RPL-models, we feed 40 batches
of test samples. We traverse P from 0.0 to 1.0. The results
of the target models’ performance are shown in Figure 10.
First, we can observe a general phenomenon: Acc drops as
the probability of the poisoned samples increases. Moreover,
this trend is reflected in all TTA methods and all evaluation
datasets (Original and other corrupted datasets). Concretely,
when we poison TTT-models and the evaluation dataset is
Ori, Acc is 93.43%, 88.50%, and 86.60% if P is 0.0, 0.5,
and 0.8, respectively (shown in Figure 10a). Meanwhile,
we notice that our poisoning attacks can degrade the target
model’s performance significantly with a low poisoning
ratio. For example, when the target model is a TENT-
model and P = 0.2 (see Figure 10c), we can degrade the
performance of the target model by 2.90%, 6.60%, 4.90%
and 11.60% on Ori, Gls-5, Fog-5, and Con-5, respectively,
which further demonstrates the efficacy of our attacks.
Warming-up before Poisoning. In this part, we aim to
evaluate TePAs in the following scenario: the target model
has learned distributional information (about the evaluation
samples) before the poisoning process. In other words, the

target models have received several i.i.d. samples in advance.
We feed i.i.d. samples first and then feed poisoned samples
to TTT-, DUA-, TENT-, and RPL-models in order, respec-
tively. Then, we evaluate the target model’s performance
on Gls-5 (Figure 11) and Ori (Figure 23). Take the TTT-
model’s performance on Gls-5 as an example (Figure 11a).
Firstly, we can observe that given a certain number of i.i.d.
samples (#x), as the number of poisoned samples (#x′)
increases, Acc is gradually decreasing. For instance, when
#x = 0, Acc drops by 36.90% (38.90%) if #x′ is 100 (400).
Another observation is that increasing #x helps to mitigate
the performance decrease. For instance, when #x′=200, Acc
drops by 37.70% if #x is 0, and Acc drops only 32.80%
if #x is 5,000. Secondly, although i.i.d. samples lead to
a more robust target model against TePAs, the improved
Acc through large amounts of i.i.d. samples can be quickly
degraded by a few poisoned samples. For instance, TTT
increases 8.50% Acc by warming up with 5, 000 i.i.d. sam-
ples but drops by 22.60% when we feed only 100 poisoned
samples. In general, the TTA models are still vulnerable to
TePAs even if being adjusted with i.i.d. samples beforehand.
Warming-up after Poisoning. Besides feeding the i.i.d.
samples in advance, the target model can also continue to

0 1 2 3 4
Loss value

0

25

50

75

100

C
ou

nt

Ori

Gls-5

Fog-5

Con-5

Poisoned

(a) TTT

0.2 0.4 0.6 0.8
Loss value

0

10

20

C
ou

nt

Ori

Gls-5

Fog-5

Con-5

Poisoned

(b) TENT

0.05 0.10 0.15 0.20 0.25
Loss value

0

5

10

15

20

C
ou

nt

Ori

Gls-5

Fog-5

Con-5

Poisoned

(c) RPL

Figure 13: The statistics results of the loss values. The target model is ResNet-18 trained on CIFAR-10. Different colored
bars indicate different types of arrived test samples.

receive i.i.d. samples after the poisoning process. In this part,
we feed poisoned samples first and then feed i.i.d. samples.
We evaluate the model’s performance on Gls-5 (Figure 12)
and Ori (Figure 24). The trends in experimental results for
the four TTA algorithms are generally consistent. Here we
take the DUA-model’s performance on Gls-5 as an example.
First, we observe that, regardless of the number of poisoned
samples, the model’s utility will recover to the normal level
with i.i.d. samples. For instance, when #x is 500, Acc are
66.60% and 66.17% when #x′ is 50 and 500. Therefore, the
performance drop caused by the poisoned samples can be
largely eliminated. However, we find that the cost required
for this resilience is relatively expensive, i.e., the recovery
is less sufficient with fewer i.i.d. samples. For instance, if
we leverage 20 poisoned samples to launch attacks first, and
100 i.i.d. samples can only recover the model to 64.47%.
Note. Combining the results in Figure 11 and Figure 12,
we notice that TTA methods have “instant response” to
the relative location between poisoned samples and i.i.d.
samples. Take the DUA-model as an example. Concretely,
when #x′ and #x are both 500, if we feed poisoned samples
earlier than i.i.d. samples, the Acc will be 66.17%. However,
it drops to 44.43% if we feed the i.i.d. samples beforehand.
Meanwhile, we notice that attacking TTT is easier than
the other three TTA methods by comparing the poisoning
percentage and the degree of performance degradation, this
is because TTT updates the whole parameters of the feature
extractor, but other TTA methods only update the parameters
in the BN layers.

5.6. Discussion

Loss Value. To better explain why TePAs are successful,
we visualize the statistics of the loss values, which are
shown in Figure 13. For instance, we feed 100 test samples
(poisoned samples or benign samples) to the TTT-model.
For TENT- and RPL-models, we feed 40 batches of test
samples. First, we can observe that the poisoned samples
indeed have greater loss values, which means the poisoned
samples that have larger losses on the surrogate model can
be transferred to the target model as well. For instance,
as shown in Figure 13a, the losses of the benign samples
are concentrated around 0.0. However, the losses caused by
poisoned samples are around 1.5. Second, by comparing
the results of TENT and RPL (Figure 13b and Figure 13c),
we observe that RPL takes a smaller range of losses than
TENT, which is the reason why RPL has less fluctuation

of the performance caused by benign samples or poisoned
samples.
Non-i.i.d. Samples. From Figure 13 we also notice that the
corrupted benign samples (non-adversarial) also have larger
loss values than the original samples. Therefore, we are
curious that what is the impact of using non-i.i.d. samples
to warm up the model. In this part, we use one kind of
corrupted data (e.g., Gls-5) to update the model first, then
we evaluate the model on another kind of corrupted data
(e.g., Fog-5). The results are shown in Figure 21. First,
we can observe that i.i.d. samples are the most effective
samples in improving performance. Second, there is uncer-
tainty about the impact of non-i.i.d. samples (increasing or
decreasing), but poisoned samples can consistently reduce
the performance to the largest extent.

6. Defense

As we have shown before, TTA methods are vulnerable
to TePAs. To mitigate the attacks, we discuss possible de-
fenses against TePAs. In this part, we take C10-Res18@Y4
adapted with TTT as the target model and take Fog-5 as
the evaluation dataset. We feed 100 poisoned samples to
the target model, the experimental results are shown in
Figure 14. Meanwhile, we discuss these defenses’ impact
on the benign samples in Figure 25. Other TTA methods
show similar trends.
Adversarial Training (AT). Since TePAs generate poi-
soned samples with adversarial attacks, one possible defense
method is using adversarial training (AT) [31] to improve the
target model’s robustness on poisoned samples. The detailed
AT process for TTT-model is shown in Algorithm 2. For
instance, we train the target robust TTT-model fat using
both the original training samples and adversarial exam-
ples generated by PoiGen. Meanwhile, we use different
perturbation budgets ϵat to generate adversarial examples.
From Figure 14a, we can observe that poisoned samples
cannot reduce the target TTT-model’s performance after
AT. However, AT can cause a reduction in the model’s
performance (see Figure 25a), which may be because the
adversarial examples introduce a negative impact on the
feature extractor of the model. Meanwhile, another disad-
vantage of AT is its high computational cost. For instance,
the training time of 1 epoch for AT is ∼ 13 times more than
that of training the model without AT (We set Iiter = 2 and
Iadv = 5 in AT), which means it is unrealistic to apply AT
to larger-scale models.

0 20 40 60 80 100
0

25

50

75

100

A
cc

ur
ac

y
(%

)

w/o AT

εat = 8/255

εat = 4/255

(a) AT
0 20 40 60 80 100

0

25

50

75

100

A
cc

ur
ac

y
(%

)

w/o BDR

Depth-4

Depth-2

(b) BDR
0 20 40 60 80 100

0

25

50

75

100

A
cc

ur
ac

y
(%

)

w/o RRP

RRP

(c) RRP
0 20 40 60 80 100

0

25

50

75

100

A
cc

ur
ac

y
(%

)

w/o JC

JC-90

JC-50

JC-20

(d) JC

Figure 14: The impact of the four defense mechanisms on the poisoned samples. The x-axis represents the number of
poisoned samples. We fix the target model to C10-Res18@Y4 and the evaluation dataset to Fog-5 of CIFAR-10-C.

Bit-depth Reduction (BDR). Color bit-depths are used
to present image pixels. For instance, an 8-bit value can
represent a pixel value in [0, 255]. Xu et al. [58] found that
reducing the bit depth is effective against adversarial attacks.
To verify if bit-depth reduction (BDR) can defend against
TePAs, we reduce the bit-depths of the input poisoned
samples to 4 and 2. The results of the target model’s perfor-
mance are shown in Figure 14b. We note that the evaluation
data in calculating Acc are also crafted by BDR as the target
model cannot distinguish the poisoned samples and benign
samples (The same applies below defense methods). We can
observe that as the number of poisoned samples increases,
the performance of the target model gradually decreases,
which means BDR cannot defend against TePAs effectively.
Random Resizing & Padding (RRP). Adding a random
resizing (RR) layer and a random padding (RP) layer is an
effective way to build DNNs that are robust to the poisoned
samples [55]. The first RR layer resizes the original input x
with size W×W×C to a newly resized x′ with random size
W ′×W ′×C, where |W ′−W | should be in a small range.
After that, the second RP layer outputs a new padding image
x′′ with padding zero pixels around the resized images. For
instance, it pads random w zeros on the left and h zeros on
the top of x′, respectively. We set W ′ as the random numbers
in [32, 40], and w, h are the random numbers in [0,W ′ −
W]. We then leverage RRP to the poisoned samples. From
Figure 14c, we can observe that RRP can also not attenuate
the impact of TePAs on model performance degradation.
JPEG Compression (JC). JPEG Compression (JC) is an-
other typical defense method to mitigate poisoning at-
tacks [16]. In this part, we discuss the effect of JPEG quality
on TePAs. We choose 90, 50, and 10 (out of 100) as the
JPEG quality values. We use JC on the poisoned samples
and show the results of the target model’s performance in
Figure 14d. We can observe that poisoned samples after
JC can still degrade the target model’s performance. Mean-
while, as the quality of the compressed image decreases, the
performance of the target model decreases.

7. Related Work

Domain Adaptation. Improving the robustness of ML mod-
els under shifted distribution data is a longstanding prob-
lem [29]. Besides TTA, there are other methods to improve
the ML model’s robustness. Domain-invariant methods [57],
[63] aim to learn embeddings that are invariant across dif-
ferent domains. Transfer learning [51], [60], [65] leverages

embeddings from a pre-trained (teacher) model to train a
new (student) model, which can work well on the new
distribution data. Semi-supervised learning [5], [24], [46]
trains the model on a mixed dataset with labeled and unla-
beled data, and the use of the unlabeled data can improve
the model’s performance on shifted distribution data. Self-
supervised learning [9], [10], [22], [42] trains models by
large-scale unlabeled datasets, and the learned embeddings
can be applied to the downstream tasks in different domains.
Poisoning Attacks. Poisoning attacks are one of the most
exploited threats to modern data-driven ML models [30],
[38], [53]. The attackers inject a small number of poi-
soned samples during the training process to sabotage the
prediction performance of the target model at test time.
Poisoning attacks have been successfully applied to many
ML settings, such as supervised learning [43], [59], self-
supervised learning [7], federated machine learning [37],
[48], etc. The closest work to our attack is poisoning attacks
against online learning (where data becomes available in
sequential order and is used to update the best predictor for
future data at each step) [44], [62]. Though the target model
sequentially updates its parameters in both online settings
and TTA settings, poisoning attacks against online learning
still assume that the adversaries have partial knowledge of
test data and are white-box adversaries. However, our poi-
soning attack assumes neither. We only assume the attackers
have query access to the target model.

8. Conclusion

In this paper, we perform the first untargeted test-
time poisoning attacks (TePAs) against four prominent TTA
methods - TTT, DUA, TENT, and RPL. Concretely, we pro-
pose a poisoned samples generation framework, PoiGen,
which relies on surrogate models and transfer-based adver-
sarial attacks to build adversarial examples and transfer such
samples as poisoned samples to degrade the performance
of the target TTA models. Empirical evaluations show that
TePAs can successfully break the target TTA models by
degrading their performance to a large extent. To mitigate
the attacks, we investigate four defense mechanisms, i.e.,
adversarial training, bit-depth reduction, JPEG compression,
and random resizing & padding. We observe that adversarial
training (AT) can avoid the effect of poison attacks on target
model degradation. However, AT affects the performance
of the target model. Also, it enlarges the training effort,
making it less possible to train the target models on large-
scale datasets. Moreover, we notice that the recovery of

the target model’s performance is inevitable for our attacks.
Even though the performance degradation is sufficient to
cause a safety incident, we leave how to irreversibly degrade
the target model’s performance as an interesting future work.
In summary, we demonstrate that the current TTA methods
are prone to test-time poisoning attacks, and we advocate
for the integration of defenses against test-time poisoning
attacks into the design of future TTA methods.

Acknowledgments

We thank all anonymous reviewers and our shepherd
for their constructive comments and valuable feedback.
This work is partially funded by the National Key R&D
Program of China (2018YFA0704701, 2020YFA0309705),
Shandong Key Research and Development Program
(2020ZLYS09), the Major Scientific and Technological In-
novation Project of Shandong, China (2019JZZY010133),
the Major Program of Guangdong Basic and Applied Re-
search (2019B030302008), and the European Health and
Digital Executive Agency (HADEA) within the project “Un-
derstanding the individual host response against Hepatitis D
Virus to develop a personalized approach for the manage-
ment of hepatitis D” (D-Solve) (grant agreement number
101057917). Tianshuo Cong is also supported by Shuimu
Tsinghua Scholar Program.

References

[1] https://www.cs.toronto.edu/∼kriz/cifar.html.

[2] https://zenodo.org/record/2535967.

[3] https://zenodo.org/record/3555552.

[4] Pratyay Banerjee, Tejas Gokhale, and Chitta Baral. Self-Supervised
Test-Time Learning for Reading Comprehension. In Conference of
the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (NAACL-HLT), pages
1200–1211. ACL, 2021.

[5] David Berthelot, Nicholas Carlini, Ekin D. Cubuk, Alex Kurakin,
Kihyuk Sohn, Han Zhang, and Colin Raffel. ReMixMatch: Semi-
Supervised Learning with Distribution Matching and Augmentation
Anchoring. In International Conference on Learning Representations
(ICLR), 2020.

[6] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning Attacks
against Support Vector Machines. In International Conference on
Machine Learning (ICML). icml.cc / Omnipress, 2012.

[7] Nicholas Carlini and Andreas Terzis. Poisoning and Backdooring
Contrastive Learning. In International Conference on Learning Rep-
resentations (ICLR), 2022.

[8] Fabio Maria Carlucci, Antonio D’Innocente, Silvia Bucci, Barbara
Caputo, and Tatiana Tommasi. Domain Generalization by Solving
Jigsaw Puzzles. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2229–2238. IEEE, 2019.

[9] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E.
Hinton. A Simple Framework for Contrastive Learning of Visual
Representations. In International Conference on Machine Learning
(ICML), pages 1597–1607. PMLR, 2020.

[10] Tianshuo Cong, Xinlei He, and Yang Zhang. SSLGuard: A Water-
marking Scheme for Self-supervised Learning Pre-trained Encoders.
In ACM SIGSAC Conference on Computer and Communications
Security (CCS), pages 579–593. ACM, 2022.

[11] Luke Nicholas Darlow, Elliot J. Crowley, Antreas Antoniou, and
Amos J. Storkey. CINIC-10 is not ImageNet or CIFAR-10. CoRR
abs/1810.03505, 2018.

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-
Fei. ImageNet: A large-scale hierarchical image database. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
pages 248–255. IEEE, 2009.

[13] Weijian Deng, Stephen Gould, and Liang Zheng. What Does Rotation
Prediction Tell Us about Classifier Accuracy under Varying Testing
Environments? In International Conference on Machine Learning
(ICML), pages 2579–2589. PMLR, 2021.

[14] Yinpeng Dong, Qi-An Fu, Xiao Yang, Tianyu Pang, Hang Su, Zihao
Xiao, and Jun Zhu. Benchmarking Adversarial Robustness. CoRR
abs/1912.11852, 2019.

[15] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu,
Xiaolin Hu, and Jianguo Li. Boosting Adversarial Attacks With
Momentum. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 9185–9193. IEEE, 2018.

[16] Gintare Karolina Dziugaite, Zoubin Ghahramani, and Daniel M. Roy.
A study of the effect of JPG compression on adversarial images.
CoRR abs/1608.00853, 2016.

[17] Liam Fowl, Micah Goldblum, Ping-Yeh Chiang, Jonas Geiping, Wo-
jtek Czaja, and Tom Goldstein. Adversarial Examples Make Strong
Poisons. In Annual Conference on Neural Information Processing
Systems (NeurIPS), pages 30339–30351. NeurIPS, 2021.

[18] Yang Fu, Sifei Liu, Umar Iqbal, Shalini De Mello, Humphrey Shi, and
Jan Kautz. Learning to Track Instances Without Video Annotations.
In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 8680–8689. IEEE, 2021.

[19] Aritra Ghosh, Himanshu Kumar, and P Shanti Sastry. Robust Loss
Functions Under Label Noise for Deep Neural Networks. In AAAI
Conference on Artificial Intelligence (AAAI). AAAI, 2017.

[20] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and Harnessing Adversarial Examples. In International Conference
on Learning Representations (ICLR), 2015.

[21] Yves Grandvalet and Yoshua Bengio. Semi-supervised Learning by
Entropy Minimization. In Annual Conference on Neural Information
Processing Systems (NIPS), pages 529–536. NIPS, 2004.

[22] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár,
and Ross B. Girshick. Masked Autoencoders Are Scalable Vision
Learners. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 15979–15988. IEEE, 2022.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
Residual Learning for Image Recognition. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 770–778.
IEEE, 2016.

[24] Xinlei He, Hongbin Liu, Neil Zhenqiang Gong, and Yang Zhang.
Semi-Leak: Membership Inference Attacks Against Semi-supervised
Learning. In European Conference on Computer Vision (ECCV),
pages 365–381. Springer, 2022.

[25] Dan Hendrycks and Thomas G. Dietterich. Benchmarking Neural
Network Robustness to Common Corruptions and Perturbations. In
International Conference on Learning Representations (ICLR), 2019.

[26] Dan Hendrycks, Norman Mu, Ekin Dogus Cubuk, Barret Zoph,
Justin Gilmer, and Balaji Lakshminarayanan. AugMix: A Simple
Data Processing Method to Improve Robustness and Uncertainty. In
International Conference on Learning Representations (ICLR), 2020.

[27] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerat-
ing Deep Network Training by Reducing Internal Covariate Shift. In
International Conference on Machine Learning (ICML), pages 448–
456. PMLR, 2015.

[28] Neerav Karani, Ertunc Erdil, Krishna Chaitanya, and Ender
Konukoglu. Test-time adaptable neural networks for robust medical
image segmentation. Medical Image Analysis, 2021.

https://www.cs.toronto.edu/~kriz/cifar.html
https://zenodo.org/record/2535967
https://zenodo.org/record/3555552

[29] Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael
Xie, Marvin Zhang, Akshay Balsubramani, Weihua Hu, Michihiro
Yasunaga, Richard Lanas Phillips, Irena Gao, Tony Lee, Etienne
David, Ian Stavness, Wei Guo, Berton Earnshaw, Imran Haque,
Sara M. Beery, Jure Leskovec, Anshul Kundaje, Emma Pierson,
Sergey Levine, Chelsea Finn, and Percy Liang. WILDS: A Bench-
mark of in-the-Wild Distribution Shifts. In International Conference
on Machine Learning (ICML), pages 5637–5664. PMLR, 2021.

[30] Yugeng Liu, Rui Wen, Xinlei He, Ahmed Salem, Zhikun Zhang,
Michael Backes, Emiliano De Cristofaro, Mario Fritz, and Yang
Zhang. ML-Doctor: Holistic Risk Assessment of Inference Attacks
Against Machine Learning Models. In USENIX Security Symposium
(USENIX Security), pages 4525–4542. USENIX, 2022.

[31] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris
Tsipras, and Adrian Vladu. Towards Deep Learning Models Resistant
to Adversarial Attacks. In International Conference on Learning
Representations (ICLR), 2018.

[32] Yuhao Mao, Chong Fu, Saizhuo Wang, Shouling Ji, Xuhong Zhang,
Zhenguang Liu, Jun Zhou, Alex X. Liu, Raheem Beyah, and Ting
Wang. Transfer Attacks Revisited: A Large-Scale Empirical Study in
Real Computer Vision Settings. In IEEE Symposium on Security and
Privacy (S&P), pages 1423–1439. IEEE, 2022.

[33] Muhammad Jehanzeb Mirza, Jakub Micorek, Horst Possegger, and
Horst Bischof. The Norm Must Go On: Dynamic Unsupervised Do-
main Adaptation by Normalization. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 14745–14755. IEEE,
2022.

[34] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and
Pascal Frossard. Universal Adversarial Perturbations. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1765–1773. IEEE, 2017.

[35] Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea
Paudice, Vasin Wongrassamee, Emil C. Lupu, and Fabio Roli. To-
wards Poisoning of Deep Learning Algorithms with Back-gradient
Optimization. In Workshop on Security and Artificial Intelligence
(AISec), pages 27–38. ACM, 2017.

[36] Ren Pang, Zheng Zhang, Xiangshan Gao, Zhaohan Xi, Shouling Ji,
Peng Cheng, and Ting Wang. TROJANZOO: Everything You Ever
Wanted to Know about Neural Backdoors (But Were Afraid to Ask).
CoRR abs/2012.09302, 2020.

[37] Tianyu Pang, Xiao Yang, Yinpeng Dong, Hang Su, and Jun Zhu.
Accumulative Poisoning Attacks on Real-time Data. In Annual
Conference on Neural Information Processing Systems (NeurIPS),
pages 2899–2912. NeurIPS, 2021.

[38] Wenjun Qiu. A Survey on Poisoning Attacks Against Supervised
Machine Learning. CoRR abs/2202.02510, 2022.

[39] Evgenia Rusak, Steffen Schneider, George Pachitariu, Luisa Eck, Pe-
ter Vincent Gehler, Oliver Bringmann, Wieland Brendel, and Matthias
Bethge. If your data distribution shifts, use self-learning. Transactions
of Machine Learning Research, 2022.

[40] Shiori Sagawa, Pang Wei Koh, Tony Lee, Irena Gao, Sang Michael
Xie, Kendrick Shen, Ananya Kumar, Weihua Hu, Michihiro Ya-
sunaga, Henrik Marklund, Sara Beery, Etienne David, Ian Stavness,
Wei Guo, Jure Leskovec, Kate Saenko, Tatsunori Hashimoto, Sergey
Levine, Chelsea Finn, and Percy Liang. Extending the WILDS
Benchmark for Unsupervised Adaptation. In International Conference
on Learning Representations (ICLR), 2022.

[41] Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bringmann,
Wieland Brendel, and Matthias Bethge. Improving Robustness
Against Common Corruptions by Covariate Shift Adaptation. In
Annual Conference on Neural Information Processing Systems
(NeurIPS). NeurIPS, 2020.

[42] Zeyang Sha, Xinlei He, Ning Yu, Michael Backes, and Yang Zhang.
Can’t Steal? Cont-Steal! Contrastive Stealing Attacks Against Image
Encoders. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, 2023.

[43] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu,
Christoph Studer, Tudor Dumitras, and Tom Goldstein. Poison
Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks.
In Annual Conference on Neural Information Processing Systems
(NeurIPS), pages 6103–6113. NeurIPS, 2018.

[44] Shai Shalev-Shwartz. Online Learning and Online Convex Optimiza-
tion. Foundations and Trends in Machine Learning, 2012.

[45] Claude Elwood Shannon. A Mathematical Theory of Communication.
ACM SIGMOBILE Mobile Computing and Communications Review,
2001.

[46] Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang,
Han Zhang, Colin Raffel, Ekin Dogus Cubuk, Alexey Kurakin, and
Chun-Liang Li. FixMatch: Simplifying Semi-Supervised Learning
with Consistency and Confidence. In Annual Conference on Neural
Information Processing Systems (NeurIPS). NeurIPS, 2020.

[47] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei A. Efros,
and Moritz Hardt. Test-Time Training with Self-Supervision for
Generalization under Distribution Shifts. In International Conference
on Machine Learning (ICML), pages 9229–9248. PMLR, 2020.

[48] Vale Tolpegin, Stacey Truex, Mehmet Emre Gursoy, and Ling Liu.
Data Poisoning Attacks Against Federated Learning Systems. In
European Symposium on Research in Computer Security (ESORICS),
pages 480–501. Springer, 2020.

[49] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Ad-
versarial Discriminative Domain Adaptation. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 2962–2971.
IEEE, 2017.

[50] Laurens van der Maaten and Geoffrey Hinton. Visualizing Data using
t-SNE. Journal of Machine Learning Research, 2008.

[51] Bolun Wang, Yuanshun Yao, Bimal Viswanath, Haitao Zheng, and
Ben Y. Zhao. With Great Training Comes Great Vulnerability:
Practical Attacks against Transfer Learning. In USENIX Security
Symposium (USENIX Security), pages 1281–1297. USENIX, 2018.

[52] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno A. Olshausen,
and Trevor Darrell. Tent: Fully Test-Time Adaptation by Entropy
Minimization. In International Conference on Learning Representa-
tions (ICLR), 2021.

[53] Zhibo Wang, Jingjing Ma, Xue Wang, Jiahui Hu, Zhan Qin, and
Kui Ren. Threats to Training: A Survey of Poisoning Attacks and
Defenses on Machine Learning Systems. ACM Computing Surveys,
2022.

[54] Yuxin Wu and Kaiming He. Group Normalization. In European
Conference on Computer Vision (ECCV), pages 3–19. Springer, 2018.

[55] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan L.
Yuille. Mitigating Adversarial Effects Through Randomization. In
International Conference on Learning Representations (ICLR), 2018.

[56] Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu Wang,
Zhou Ren, and Alan L. Yuille. Improving Transferability of Ad-
versarial Examples With Input Diversity. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 2730–2739.
IEEE, 2019.

[57] Ruijia Xu, Guanbin Li, Jihan Yang, and Liang Lin. Larger Norm More
Transferable: An Adaptive Feature Norm Approach for Unsupervised
Domain Adaptation. In IEEE International Conference on Computer
Vision (ICCV), pages 1426–1435. IEEE, 2019.

[58] Weilin Xu, David Evans, and Yanjun Qi. Feature Squeezing: De-
tecting Adversarial Examples in Deep Neural Networks. In Network
and Distributed System Security Symposium (NDSS). Internet Society,
2018.

[59] Chaofei Yang, Qing Wu, Hai Li, and Yiran Chen. Generative Poison-
ing Attack Method Against Neural Networks. CoRR abs/1703.01340,
2017.

[60] Junho Yim, Donggyu Joo, Ji-Hoon Bae, and Junmo Kim. A Gift from
Knowledge Distillation: Fast Optimization, Network Minimization
and Transfer Learning. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 7130–7138. IEEE, 2017.

[61] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and
Oriol Vinyals. Understanding Deep Learning Requires Rethinking
Generalization. In International Conference on Learning Represen-
tations (ICLR), 2017.

[62] Minxing Zhang, Zhaochun Ren, Zihan Wang, Pengjie Ren, Zhumin
Chen, Pengfei Hu, and Yang Zhang. Membership Inference At-
tacks Against Recommender Systems. In ACM SIGSAC Conference
on Computer and Communications Security (CCS), pages 864–879.
ACM, 2021.

[63] Yuchen Zhang, Tianle Liu, Mingsheng Long, and Michael I. Jordan.
Bridging Theory and Algorithm for Domain Adaptation. In Interna-
tional Conference on Machine Learning (ICML), pages 7404–7413.
PMLR, 2019.

[64] Zhilu Zhang and Mert R. Sabuncu. Generalized Cross Entropy Loss
for Training Deep Neural Networks with Noisy Labels. In Annual
Conference on Neural Information Processing Systems (NeurIPS),
pages 8792–8802. NeurIPS, 2018.

[65] Barret Zoph, Deniz Yuret, Jonathan May, and Kevin Knight. Trans-
fer Learning for Low-Resource Neural Machine Translation. In
Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 1568–1575. ACL, 2016.

[66] Yuli Zou, Weijian Deng, and Liang Zheng. Adaptive Calibrator
Ensemble for Model Calibration under Distribution Shift. CoRR
abs/2303.05331, 2023.

Appendix A.
Dataset

We leverage the following five datasets in our experi-
ments:

• CIFAR-10 [1] & CIFAR-100 [1] both have 50k
training images and 10k test images. However, the
images in CIFAR-10 are in 10 classes, and CIFAR-
100 contains 100 types of images. The size of each
image is 32 × 32 × 3. We use the training datasets
of CIFAR-10 and CIFAR-100 to train the target
models. Meanwhile, we use their test datasets to
evaluate the model’s performance on the original
domain, which is denoted as “Original (Ori).”

• CIFAR-10-C [2] & CIFAR-100-C [3] are the cor-
rupted version of CIFAR-10 and CIFAR-100, re-
spectively. For instance, they contain 15 types of
corruption in different categories, e.g., blur, weather,
digital, etc. Each corruption has 5 different levels of
severity, in which level 5 is the severest level. We
choose three different types of corruptions, including
Glass blur (Gls), Fog, and Contrast (Con) to evaluate
the model’s robustness on distribution shifts. Note
that Fog-5 stands for fog corruption with level 5. An
illustration of CIFAR-10-C is shown in Figure 20.

• CINIC-10 [11] collects images from CIFAR-10 and
ImageNet [12]. For instance, the training dataset of
CINIC-10 contains 20k images from CIFAR-10 and
70k images from ImageNet. We use the 70k images
from ImageNet as our surrogate dataset to train the
surrogate model. The size of each image in CINIC-
10 is 32× 32× 3.

Training Process

𝑒(𝑥; 𝜃!)
𝜋"(𝑥; 𝜃")

𝜋#(𝑥; 𝜃#)

0°
90°
180°
270°

𝜃∗ 𝜃%

Cat

… 𝜃&'(

…

𝜃&

Bird

…
Adaptation1 Prediction2

𝑥(𝑥&

Inference Process

Figure 15: Overview of TTT. First, TTT trains a Y-structured
model with a rotation prediction task and a classification
task. During the inference process, TTT uses the rotation
prediction loss to update the model first (colored in blue)
and then uses the updated parameters to output the result
(colored in orange).

…

Batch normalization layers

Normalization statistics

Affine transformation

Updated by Eq. (4)

Target model

!
"

#

$

!′
"′

#′

$′

!’’
"′′

#′′

$′′

………

Figure 16: Overview of DUA. DUA only adapts the nor-
malization statistics in the BN layers of the target model,
and all other parameters are frozen.

…

Replaced by the current statistics

Target model

!
"

#

$

!′
"′

#′

$′

!’’
"′′

#′′

$′′

…

Updated by ℒ!"#! or ℒ$%&

……

Figure 17: Overview of TENT and RPL. TENT (RPL)
adapts the affine transformation parameters of the BN layers
by Ltent (Lrpl), and they both replace the normalization
statistics obtained from the original domain with the current
transfer domain statistics.

Appendix B.
Illustration of TTA Methods

The illustrations of TTT, DUA, TENT, and RPL are
shown in Figure 15, Figure 16, and Figure 17.

Appendix C.
Ablation Study

In this part, we discuss how the hyperparameters affect
the performance of our TePAs. We consider the perturbation
budget ϵ and the severity level of corruption. Here we use
the ResNet18 trained on CIFAR-10 as the target model and
use Fog-5 as the evaluation dataset for default.
The Impact of ϵ. We first show how ϵ affects the strength
of TePAs. We use different perturbation budgets, i.e., 8/255,
16/255 and 32/255 to generate poisoned samples. For TTT and
DUA, we feed 100 test samples (i.i.d. samples or poisoned

TTT DUA TENT RPL
TTA Methods

20

40

60

80

100

A
cc

ur
ac

y(
%

)

i.i.d

8/255

16/255

32/255

(a) Perturbation Budget ϵ

lv.1 lv.2 lv.3 lv.4 lv.5
Severity

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

I.I.D. samples

Poisoned samples

(b) Corruption Level

Figure 18: Ablation Study. The target model is ResNet-18
trained on CIFAR-10. We fix De to Fog-5 of CIFAR-10-C.

TTT

DUA

TENT

RPL

Figure 19: Visualization results of the poisoned samples.

Ori

Gls-5 Fog-5 Con-5

Gls-1 Fog-1 Con-1

Figure 20: Visualization results of the benign images from
CIFAR-10-C.

samples). For TENT and RPL, we feed 40 batches of test
samples. The results are shown in Figure 18a. We can ob-
serve that for the four TTA methods, the greater the intensity
of the perturbation contained in the poisoned samples, the
more significant the degradation in model performance.
The Impact of Corruption Level. In the main body of
our paper, we use the highest severity of corruption (Level
5) to evaluate the model’s performance. We here discuss the
performance of TePAs on varying degrees of corruption. We
feed 100 i.i.d. or poisoned samples to the target TTT-model.
The results are shown in Figure 18b. First, we can observe
that the performance of the model decreases as the level
increases. Second, TePAs could reduce the ability of the
model on all levels of corruption.

Appendix D.
Additional Experimental Results

More experimental results are shown in Figure 19, Fig-
ure 20, Figure 21, Figure 22, Figure 23, Figure 24, and
Figure 25.

Ori Gls-5 Fog-5 Con-5
Evaluation

O
ri

G
ls

-5
F

og
-5

C
on

-5
F

in
e-

tu
ni

ng

93.60 60.60 73.50 82.10

93.60 63.60 70.70 82.60

93.70 62.60 79.00 83.40

93.60 62.50 74.00 85.40

(a) TTT

Ori Gls-5 Fog-5 Con-5
Evaluation

O
ri

G
ls

-5
F

og
-5

C
on

-5
F

in
e-

tu
ni

ng

92.40 57.20 67.20 16.70

88.30 67.10 59.10 15.50

86.30 55.80 81.50 43.70

65.40 39.30 74.60 57.80

(b) DUA

Ori Gls-5 Fog-5 Con-5
Evaluation

O
ri

G
ls

-5
F

og
-5

C
on

-5
F

in
e-

tu
ni

ng

91.90 64.30 84.40 82.80

89.20 68.80 77.30 77.70

90.90 62.60 86.10 81.50

90.80 61.60 82.40 84.60

(c) TENT

Ori Gls-5 Fog-5 Con-5
Evaluation

O
ri

G
ls

-5
F

og
-5

C
on

-5
F

in
e-

tu
ni

ng

92.50 65.50 83.90 83.00

92.00 68.10 79.70 79.50

91.10 64.90 83.80 83.00

90.60 61.70 80.30 81.70

(d) RPL

Figure 21: The test samples used to fine-tune the target
model and the evaluation samples are non-i.i.d.. The y-axis
represents the corruption types of the fine-tuning samples.
The x-axis stands for the evaluation dataset.

Algorithm 2: Adversarial training for TTT-models
Input: Training dataset Dtrain, initial network f ,

the perturbation budget ϵat;
Output: Robust TTT-model fat;

1 Main function AT (Dtrain, f , ϵat):
2 %Transfer f into a Y-structured network with a

feature extractor e(·), a main task branch
πm(·), and an auxiliary task branch πs(·).

3 e(0), π
(0)
s , π

(0)
m ← f ;

4 for t in [0, Tmax] do
5 for (xi, yi) in Dtrain do
6 %Train the Y-structured network with

the original training samples.
7 L1 = Lm(xi, yi, e

(t), π
(t)
m);

8 L2 = Ls(xi, yi, e
(t), π

(t)
s);

9 %Train the Y-structured network with
the adversarial examples.

10 frot = e(t) ◦ π(t)
s ;

11 x′
i = PoiGen(TTT, xi, frot,Ls, ϵat);

12 L3 = Lm(x′
i, yi, e

(t), π
(t)
m);

13 L4 = Ls(x
′
i, e

(t), π
(t)
s);

14 %Compute the final loss function for
AT and update the model.

15 Lat = L1 + L2 + L3 + L4;
16 e(t+1), π

(t+1)
s , π

(t+1)
m ←

Optimizer(e(t), π
(t)
s , π

(t)
m ,Lat);

17 %Generate the final Y-structured model fat.
18 fat ← e(Tmax), π

(Tmax)
s , π

(Tmax)
m ;

19 return fat.

Ori Gls-5 Fog-5 Con-5

20

30

40

50

60

70

A
cc

ur
ac

y
(%

)

(a) TTT

Ori Gls-5 Fog-5 Con-520

30

40

50

60

70

80

A
cc

ur
ac

y
(%

)

(b) DUA

Ori Gls-5 Fog-5 Con-520

30

40

50

60

70

80

A
cc

ur
ac

y
(%

)

(c) TENT

Ori Gls-5 Fog-5 Con-520

30

40

50

60

70

80

A
cc

ur
ac

y
(%

)

(d) RPL

Figure 22: Utility of TTA methods. The target model is ResNet-50 trained on CIFAR-100. The x-axis represents different
evaluation datasets. The y-axis represents the prediction accuracy.

0 100 200 300 400
Poisoned Samples

50
00

20
00

50
0

50
0

I.
I.

D
.

S
am

pl
es

93.40 87.70 84.50 82.30 80.50

93.30 88.10 85.50 83.40 82.80

93.50 86.70 83.70 82.50 81.10

93.70 85.60 83.70 82.80 81.50

93.50 86.60 83.80 82.20 80.40

(a) TTT

0 20 50 100 500
Poisoned Samples

50
0

10
0

50
20

0
I.

I.
D

.
S

am
pl

es

91.77 91.40 90.67 88.07 61.07

92.50 91.83 90.27 87.37 60.90

92.57 91.30 89.73 86.50 60.17

92.70 89.13 84.83 80.83 57.77

93.00 77.50 68.27 65.43 54.83

(b) DUA

0 10 20 30 40
Poisoned Samples

40
30

20
10

0
I.

I.
D

.
S

am
pl

es

92.03 91.17 89.03 86.60 85.27

91.87 90.90 88.87 86.70 84.13

92.10 91.40 89.10 86.53 83.73

92.07 90.77 88.83 86.90 84.03

91.60 91.03 88.63 85.40 84.37

(c) TENT

0 10 20 30 40
Poisoned Samples

40
30

20
10

0
I.

I.
D

.
S

am
pl

es

92.07 91.73 90.50 88.70 87.93

92.07 91.27 90.33 89.90 87.50

91.83 91.17 90.63 89.20 87.13

91.70 91.70 90.60 88.97 87.80

91.60 91.00 89.80 88.80 87.87

(d) RPL

Figure 23: Warming-up before Poisoning. The target model is ResNet-18 trained on CIFAR-10. The y-axis and the x-axis
represent the number of the i.i.d. samples and the poisoned samples, respectively. We fix the evaluation dataset to Ori.

0 50 500 2000 5000
I.I.D. Samples

40
0

30
0

20
0

10
0

0
P

oi
so

ne
d

S
am

pl
es

80.40 90.60 92.80 93.00 93.20

82.20 89.00 93.10 93.30 93.10

83.80 89.10 93.10 92.90 92.80

86.60 89.90 93.30 93.20 93.20

93.50 93.70 93.50 93.30 93.40

(a) TTT

0 20 50 100 500
I.I.D. Samples

50
0

10
0

50
20

0
P

oi
so

ne
d

S
am

pl
es

54.83 63.60 71.20 81.97 91.10

65.47 70.47 77.40 84.37 91.20

68.27 76.00 81.03 86.77 91.33

77.50 86.13 88.57 90.27 91.60

93.00 92.70 92.57 92.50 91.77

(b) DUA

0 10 20 30 40
I.I.D. Samples

40
30

20
10

0
P

oi
so

ne
d

S
am

pl
es

84.37 83.90 85.77 87.57 88.80

85.40 86.67 87.83 88.10 90.23

88.63 87.93 88.80 89.77 90.63

91.03 90.90 91.07 91.10 90.60

91.60 92.07 92.10 91.87 92.03

(c) TENT

0 10 20 30 40
I.I.D. Samples

40
30

20
10

0
P

oi
so

ne
d

S
am

pl
es

87.87 88.70 88.63 89.07 88.93

88.80 89.37 89.43 90.23 90.30

89.80 90.73 90.97 90.13 90.90

91.00 91.60 91.83 91.33 91.27

91.60 91.70 91.83 92.07 92.07

(d) RPL

Figure 24: Warming-up after Poisoning. The target model is ResNet-18 trained on CIFAR-10. The y-axis and the x-axis
represent the number of the poisoned samples and the i.i.d. samples, respectively. We fix the evaluation dataset to Ori.

0 20 40 60 80 100
0

25

50

75

100

A
cc

ur
ac

y
(%

)

w/o AT

εat = 8/255

εat = 4/255

(a) AT
0 20 40 60 80 100

60

80

100

A
cc

ur
ac

y
(%

)

w/o BDR

Depth-4

Depth-2

(b) BDR
0 20 40 60 80 100

0

25

50

75

100

A
cc

ur
ac

y
(%

)

w/o RRP

RRP

(c) RRP
0 20 40 60 80 100

0

25

50

75

100

A
cc

ur
ac

y
(%

)

w/o JC

JC-90

JC-50

JC-20

(d) JC

Figure 25: The impact of the four defense mechanisms on the benign samples. The x-axis represents the number of the
benign samples. We fix the target model to C10-Res18@Y4 and the evaluation dataset to Fog-5 of CIFAR-10.

Appendix E.
Meta-Review

E.1. Summary

This paper investigates the risk of untargeted test-time
poisoning attacks (TePA) against test-time adaptation (TTA)
models. Specifically, the paper proposes an approach for
generating poisoned samples (PoiGen) against different TTA
algorithms, and evaluates this approach against different im-
age datasets, on different model architectures, using different
poisoning strategies. The results show a degradation in
model performance and the paper briefly considers various
defenses.

E.2. Scientific Contributions

• Identifies an Impactful Vulnerability.
• Provides a Valuable Step Forward in an Established

Field.

E.3. Reasons for Acceptance

1) This paper identifies a potentially impactful vul-
nerability in TTA models, where an adversary may
be able to poison such models at test time. The
technique presented in the paper does not require
query access to the target model, but only a means
for the adversary to present poisoned samples to
the target model at test time.

2) The paper provides a valuable step forward in an
established field. Training-time poisoning attacks
on ML systems have been extensively studied, but
this paper explores how a specific subset of models
may be vulnerable to poisoning at test time.

E.4. Noteworthy Concerns

1) The threat model assumes that multiple users (in-
cluding the adversary) update the same model.
This is plausible in some contexts (e.g. road sign
identification for cars), but potentially limits the
applicability of this attack.

2) The evaluation in the paper assumes a relatively
small attack window, in which the adversary is able
to inject multiple poisoned samples. The poisoning
percentage within this attack window may therefore
be significantly higher than the overall percentage
of poisoned samples input to the model.

	Introduction
	Background
	Preliminaries
	TTA Methods
	Poisoning Attacks
	Adversarial Attacks

	Threat Model
	Attack Methodology
	Attack Overview
	TePA Against TTT
	TePA Against DUA
	TePA Against TENT & RPL

	Evaluation
	Experimental Setup
	Utility of Frozen Target Model
	Utility of TTA Methods
	TePA Against TTA Models
	Impact of the Poisoning Strategies
	Discussion

	Defense
	Related Work
	Conclusion
	References
	Appendix A: Dataset
	Appendix B: Illustration of TTA Methods
	Appendix C: Ablation Study
	Appendix D: Additional Experimental Results
	Appendix E: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance
	Noteworthy Concerns

