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Abstract—The spread of toxic content online is an important
problem that has adverse effects on user experience online and
in our society at large. Motivated by the importance and impact
of the problem, research focuses on developing solutions to
detect toxic content, usually leveraging machine learning (ML)
models trained on human-annotated datasets. While these
efforts are important, these models usually do not generalize
well and they can not cope with new trends (e.g., the emergence
of new toxic terms). Currently, we are witnessing a shift in
the approach to tackling societal issues online, particularly
leveraging large language models (LLMs) like GPT-3 or T5 that
are trained on vast corpora and have strong generalizability. In
this work, we investigate how we can use LLMs and prompt
learning to tackle the problem of toxic content, particularly
focusing on three tasks; 1) Toxicity Classification, 2) Toxic
Span Detection, and 3) Detoxification. We perform an extensive
evaluation over five model architectures and eight datasets
demonstrating that LLMs with prompt learning can achieve
similar or even better performance compared to models trained
on these specific tasks. We find that prompt learning achieves
around 10% improvement in the toxicity classification task
compared to the baselines, while for the toxic span detection
task we find better performance to the best baseline (0.643
vs. 0.640 in terms of F1-score). Finally, for the detoxification
task, we find that prompt learning can successfully reduce the
average toxicity score (from 0.775 to 0.213) while preserving
semantic meaning.1

Disclaimer. This paper contains uncensored toxic content
that might be offensive or disturbing to the readers.

1. Introduction

In online platforms, toxic content can be defined as
rude, disrespectful, or unreasonable content that may result
in users leaving the conversation [6]. It has been a long-
standing problem affecting our society [5], [10], [53], [14].
To tackle this problem, researchers and companies leverage
large-scale labeled datasets to train powerful machine learn-
ing (ML) models for toxicity detection and mitigation [4],
[10], [61], [66], [63], [36].

One major obstacle in the development of accurate and
generalizable toxic content classifiers is the lack of a com-
prehensive labeled dataset that contains different types of

1. Our code is available at https://github.com/xinleihe/toxic-prompt.

toxic content. This is mainly because the data collection
and labeling process for the creation of such datasets is
costly, which hinders the development of effective meth-
ods for detecting toxic content. Also, previous work [5],
[61] has shown that the toxicity detection model trained
on one dataset is less effective when applied to other
datasets. Moreover, due to the fast evolution of language
(new phrases, words, style, etc.), it is crucial to develop
a toxicity detection mechanism that can quickly adapt to
different circumstances.

With the success of pre-trained language models (LMs),
a dominant way to adapt the model to downstream tasks
is fine-tuning, where the whole model or part of the model
is optimized to better fit the downstream tasks. Recently,
large language models (LLMs) like GPT-3 [7] and T5 [44]
have shown promising performance in downstream tasks
without updating at all the model’s parameters by directly
querying the model using natural language, an emerging
paradigm called prompt learning. With the help of prompt
learning, the LLM can generate an output that aims to solve
a specific task, all with a natural language task instruction
(e.g., using a prompt: “Translate it from English to French”
for machine translation) and a few samples as the task input.
Besides the handcrafted fixed prompts, recent work [28],
[30] shows that prompt tuning is an efficient way to achieve
more promising performance on various tasks with restricted
computational resources, limited datasets, and bounded time.
Concretely, instead of fine-tuning the LLM, prompt tuning
freezes the LLM and only optimizes the prompt (e.g., the
way that the prompt is written) in such a way that the
LLM’s performance is optimized for the specific task at
hand. Given that prompt learning is a promising way to
use LLM for various tasks, here we aim to use prompt
learning to tackle the problem of toxic content and assess
how prompt learning-based approaches compare to state-of-
the-art methods of tackling toxic content.
Our Work. In this work, we conduct the first systematic
analysis focusing on how prompt learning can help tackle
the problem of toxic content. Concretely, we focus on three
tasks, i.e., toxicity classification, toxic span detection, and
detoxification (see Table 1 for examples of these tasks).
Specifically, for the first task (toxicity classification), given a
sentence, we first map its label into the word “Yes” or “No”
and fine-tune the prompt to better guide the LLM to conduct
the task. For the second task (toxic span detection), with
prompt tuning, given a sentence with toxic spans, we aim
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TABLE 1: Examples of the three tasks we consider in our
work. Toxicity classification aims to classify whether the
given sentence is toxic or not. Toxic span detection aims
to detect the exact span that makes the sentence toxic.
Detoxification aims to reduce the toxicity of the given
sentence while preserving its semantic information.

Toxicity Classification Answer
your reading comprehension is
more fucked up than a football
bat.

Toxic

Toxic Span Detection Answer

keep hiring imbeciles like this
jerk and you will end up with a
no firearms for rent-a-cops bill
next session.

keep hiring imbeciles like
this jerk and you will end up
with a no firearms for rent-a-
cops bill next session.

Detoxification Answer
what a chicken crap excuse for
a reason.

what a bad excuse for a reason.

to first generate the sentence without the toxic spans, then
subtract the original sentence with the generated sentence to
obtain the spans. Finally, for the third task (detoxification),
we tune the prompt to rephrase the toxic sentence into a
non-toxic version while preserving the semantic meaning.

Extensive evaluation of eight datasets and five model
architectures shows that prompt tuning has comparable or
even better performance than the baselines. For instance, for
the toxicity classification task, prompt tuning gains more
than 10% F1-score improvement on average (see Table 3).
For the toxic span detection task, our method achieves 0.643
F1-score, which is better than the best result provided by
SPAN-BERT (0.640), but with much less training time. Re-
garding the detoxification task, we find that our method can
successfully detoxify the text (e.g., the average toxicity score
drops from 0.775 to 0.213 on ParaDetox) while preserving
the semantic information to a large extent. In general, one
major advantage of prompt tuning is that it can adapt to
different tasks with fewer training samples/steps. For online
services such as social media, these improvements and cost
reductions are significant (given billions of posts per day).
This also fits the purpose of green AI [3], [49] for making
AI research more environmentally friendly and inclusive.

In summary, we make the following contributions:

• To the best of our knowledge, we perform the first
systematic evaluation using prompt tuning to tackle
the problem of toxic content.

• We leverage prompt tuning to solve the three most
representative tasks in this domain, i.e., toxicity clas-
sification, toxic span detection, and detoxification.

• Extensive evaluations show that our prompt tuning
methods can achieve comparable or even better per-
formance than the SOTA methods. Also, we observe
that prompt tuning has promising performance on
fast adaptation to different tasks, i.e., with fewer
training samples/epochs.

Implications. Our work has important implications for
various stakeholders involved in understanding and mitigat-

ing online abuse, hate, and harassment. First, we make our
code and annotated dataset available, enabling social media
operators to implement solutions to detect and moderate
toxic content. Our approach is superior to previous efforts
when considering the annotated data requirements, the per-
formance, the time cost, and the robustness/transferability
of the proposed solution. Additionally, our work can be
used to build explainable toxic detection/moderation tools,
given our method’s outstanding performance on the toxic
span detection and detoxification tasks. Third, we argue
that our work can assist and motivate the research commu-
nity in leveraging the prompt tuning approach for solving
other emerging socio-technical issues, such as the spread of
misinformation online. Overall, our work is an important
step towards understanding the power and generalizability
of LLM in solving hard tasks (e.g., online toxicity), which is
an important and timely issue, given the extensive popularity
of LLM and chatbots powered by LLM (e.g., ChatGPT).
Ethical Considerations. We emphasize that in this work we
work exclusively with publicly available datasets focusing
on toxicity classification, toxic span detection, and detoxifi-
cation tasks. Also, we use publicly available large language
models to assess their performance on these tasks and how
our work compares to previous efforts. We acknowledge that
since we model all three tasks as generation tasks, the model
may generate toxic content, however, we took the following
steps to minimize harm: 1) we do not share the generated
content with people or online users; and 2) all annotations
required for our work were done by the authors of this study.
Finally, in this work, we show that using prompt-tuning,
large language models can detoxify content with acceptable
performance. At the same time, however, adversaries might
use large language models and prompt tuning to do the
opposite task (i.e., toxifying content). We believe that this
potential abuse is outside of the scope of this work. Yet,
it highlights the need for the implementation and use of
appropriate safeguards (e.g., similar to Stable Diffusion’s
Safety Filter2), to ensure that large language models and
prompt tuning can not be used for malicious purposes (e.g.,
generation and dissemination of toxic content).

2. Preliminary

Prompt Learning. With the advance of pre-trained LLM
such as GPT-2/3, the previous “pre-train, fine-tune” pro-
cedure is replaced by the “pre-train, prompt, and predict”
paradigm [31]. Concretely, given a downstream task, fine-
tuning requires the training objective to be specified be-
forehand and the model needs to be updated. In contrast,
prompt learning [7] uses a prompt that contains the task-
specific description and text examples in a natural language
way as the input to the model. In this way, the downstream
task can be formulated as a [MASK]language modeling
problem (i.e., predict masked text pieces based on the con-
text) and does not need to update the parameters in the
underlying model. Prompt learning is especially suitable for

2. https://stability.ai/blog/stable-diffusion-public-release.
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few-shot downstream tasks when limited training examples
are available and fine-tuning the pre-trained model is costly.
In general, prompt learning can be broadly grouped into
two categories - manual prompt and learnable prompt (soft
prompt).
Manual Prompt. The natural way to create prompts is
to manually design intuitive textual templates based on
human/domain knowledge [7]. For example, if the task is
to classify the sentiment of a movie review “Absolutely
terrible writing and dragged-out unnecessary dialogue”, we
can append a prompt “The review is” to the content and
get “Absolutely terrible writing and dragged-out unnecessary
dialogue. The review is [MASK]”. We expect the lan-
guage model to generate “horrible” than “great” to replace
[MASK]. Manual prompts have been proven to solve vari-
ous tasks with decent accuracy [31]. However, handcrafted
prompts need to be customized based on the downstream
tasks, inevitably introducing artificial bias and leading to
sub-optimal results.
Learnable Prompt. In contrast to the manual prompts,
learnable prompt methods automatically learn to prompt
from a larger searching space for the candidate prompts to
better fit the downstream tasks. Prefix tuning [30] is one
of the most promising techniques for prompt tuning. Con-
cretely, it adds a prefix (i.e., a sequence of continuous task-
specific vectors) before the input, which can be considered
as a set of “virtual tokens”. Given the downstream task, the
prefix will be optimized while the parameters θ of LM are
frozen. This is extremely efficient compared to fine-tuning
the whole model as for different downstream tasks, only
different prefixes instead of different models will be updated.
Formally, the prefix matrix Mϕ parameterized by ϕ can be
updated via the following log-likelihood objective:

max
ϕ

logP (y|x; θ;ϕ) = max
ϕ

∑
yi

logP (yi|h<i; θ;ϕ) (1)

where h<i = [h
(1)
<i ; · · · ;h

(n)
<i ] is a function of the trainable

parameters at time step i. It is directly copied from Mϕ if
the time step is within the prefix (hi is Mϕ[i]), otherwise
it is computed with the LM. Similarly, Lester et al. [28]
propose a more efficient method that adds several tunable
tokens as the prefix and optimizes the embeddings of those
tunable tokens directly. It has fewer tunable parameters as
it does not involve additional tunable parameters in each
network layer. Note that the learnable prompt (prefix matrix)
is the embedding of a set of “virtual words” which can
be optimized. The embeddings have mathematical meanings
but cannot be mapped into real words.

3. Tasks

In this work, we consider three tasks that are related to
toxicity: 1) toxicity classification (detect whether the text
is toxic), 2) toxic span detection (detect which parts of the
text are toxic), and 3) detoxification (eliminate toxicity in the
text while preserving its semantics). The three tasks handle

toxicity in different levels: toxicity classification only detects
whether the whole text is toxic or not; toxic span detection
aims to detect the exact character offset of the spans that
make the text to be toxic, and detoxification’s goal is to
eliminate the toxic content from the text while preserving
its semantic meaning.

3.1. Task1: Toxicity Classification

Goal. We frame this task as a binary classification task,
where the input is a piece of text and the output is whether
the given text is toxic or not. An example of toxicity
classification is shown in Table 1.
Existing Methods. Existing toxicity classification methods
usually leverage a labeled dataset (a text is annotated as
toxic or not) to train classifiers or fine-tune an LM. Early
efforts widely use feature engineering (e.g., dictionaries,
bag-of-words, etc.) to extract features from text and detect
toxic language or phrases [12]. With the advance of deep
neural networks (DNNs), recent efforts have been focusing
on training toxicity classification models based on recurrent
neural networks (RNNs) [38], convolutional neural networks
(CNNs) [15], and transformers (e.g., BERT) [1]. The very
latest trend of toxicity classification is using LLMs that are
pre-trained on large unlabeled corpora and then fine-tuning
them to tailor them for the toxicity classification task [64].
The drawback of these methods is that they require a large
annotated corpus to train or fine-tune an LM and their
detection effectiveness is limited by either the size of the
labeled dataset or the time to fine-tune the pre-trained LMs.
Our Method. Given the language model parameterized by
θ, a set of texts {x|x ∈ X} and the corresponding label
{y ∈ Y }, we aim to learn the prefix matrix Mϕ so that
the prompt consist with Mϕ (parameterized by ϕ) and x
can successfully retrieve label y from the language model
θ. Our optimization goal is summarized in Equation 2.

ϕ∗ = arg min
ϕ

L(f(X,ϕ, θ), Y ) (2)

where L is our loss function (e.g., binary cross-entropy loss)
and f is our toxicity classification model. It is important to
note that our model does not fine-tune the language model
parameterized by θ.

3.2. Task2: Toxic Span Detection

Goal. The toxic span detection aims to identify the specific
spans (i.e., the character offsets) that make the text toxic. For
instance, in the example shown in Table 1, the toxic span
detection task should return two spans - one for “imbeciles”
(starting at 13 and ending at 21) and one for “jerk” (starting
at 33 and ending at 36). It is another important task as it
can assist users in better understanding how the toxicity is
reflected in the text (e.g., the highlighted toxic span can
assist annotators to support their decisions). Formally, given
an input text t, our goal is to determine the exact toxic spans
{St} in the text.
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Existing Methods. Toxic span detection can be seen as
a case of attribution or rationale extraction[39]. Most of
previous work [12], [22], [18] frame this task as a se-
quence labeling task. Concretely, given the labeled toxic
span corpus, an LM can be trained to label each word as
toxic or not. Once the model is trained and given a text the
model will give a toxicity prediction label for each word.
Existing methods have been widely using transformers (e.g.,
BERT+CRF [12], SPAN-BERT [22]) or recurrent neural
networks (e.g., BiLSTM [18]) to attain the goal. Some
research also experimented with custom loss [59] and data
augmentation [55] to boost the performance of toxic span
detection.
Our Method. Our method is fundamentally different from
the existing methods. Instead of considering the toxic span
detection as a sequence labeling task, we treat it directly
as a generation task. Concretely, the input of our model is
the original text that contains the toxic content. We aim to
leverage the prompt and the (frozen) LLM to generate text
without the toxic span while keeping the rest the same as
the input text. Note that, with the prompt, the LLM does
not attempt to replace the toxic span in the generated text,
rather it generates a, usually, incomplete text that does not
have any toxic spans. Then, to detect the toxic span, we
run a mapping algorithm to “subtract” the input text from
the generated text and consider the rest as the toxic spans
(i.e., character-level offsets). Our optimization goal, given
the input T = {t} and T̃ = {t \ {St}}, is summarized in
Equation 3.

ϕ∗ = arg min
ϕ

L(T̃ , f(T, ϕ, θ)) (3)

It learns Mϕ (parameterized by ϕ) that nudges the large
language model θ to remove only toxic spans {St} from
X .

3.3. Task3: Text Detoxification

Goal. Text detoxification, as its name suggests, aims to
eliminate toxicity from text and generate a detoxified ver-
sion of the text while preserving the semantic meaning.
Different from the previous tasks that only focus on the
detection of toxicity (e.g., toxicity classification and toxic
span identification), text detoxification addresses the toxic
content by proactively rewriting it. An example of toxicity
detoxification is shown in Table 1. Formally, for this task,
the input is a toxic text t and our goal is to generate a
detoxified version of the text t̂.
Existing Methods. Text detoxification can be viewed as a
style transfer task. That is, toxicity can be treated as the style
of a text. The style transfer methods are applied to rewrite
the text with similar semantic meaning without the toxicity
style. In previous work [37], [32], both supervised and un-
supervised methods are proposed to solve this task in a style
transfer manner. Logacheva et al. [32] propose DetoxBART,
which fine-tunes the Transformer-based generation model
BART [29] on the ParaDetox dataset. Such fune-tuning

TABLE 2: Overview of datasets. Note that ∗ means the
dataset provides the train/test partition.

Dataset Task # Train # Test

HateXplain [35] 1 12,578 3,050
USElectionHate20 [16] ∗ 1 586 118
HateCheck [45] 1 1,998 484
SBIC [46] ∗ 1 93,346 11,000
MHS [23] 1 22,700 5,762
ToxicSpan [39] ∗ 2 7,888 1,991
Parallel [11] 3 886 222
ParaDetox [32] 3 9,551 2,388

process makes DetoxBART yield the best performance in
terms of detoxification and semantic preservation. The other
end-to-end approaches include DualRL [34], Deep Latent
Sequence Model (DLSM) [17], Stable Style Transformer
(SST) [27], Style Transfer as Paraphrase (STRAP) [24],
Paraphrasing GeDi (ParaGeDi) [9], etc.
Our Method. The detoxification task is also a generation
task. Given the paired dataset (i.e., the toxic text T and the
paraphrased non-toxic counterpart T̂ ), our goal is to learn
the prompt Mϕ that can better transfer the input text (toxic)
into the output text (non-toxic) text while preserving the
semantics. The optimization goal is similar to Equation 3
and the only difference is that the label changes from T̃ to T̂
where the former is the texts without toxic spans (incomplete
texts) and the later is the detoxified texts (complete texts).

4. Datasets and Models

4.1. Datasets

In this paper, we consider eight datasets for the evalua-
tion of the three tasks. Note that, in Task 1 (toxicity classifi-
cation), for each dataset, we generate a balanced version of
it by randomly choosing the same number of samples from
the larger category to match the smaller category. We follow
the train/test partition of a dataset if they have already been
provided. Otherwise, we randomly sample 80% of a dataset
as the training dataset and the rest 20% as the testing dataset.
Table 2 reports some basic statistics about each dataset. We
describe each dataset below.
HateXplain [35]. It is a benchmark dataset collected from
Twitter and Gab for explainable hate speech detection. The
dataset is annotated by Amazon Mechanical Turk (MTurk)
workers with three labels: hate, offensive, or normal. For our
work, we consider both hate and offensive posts as toxic and
the rest as non-toxic.
USElectionHate20 [16]. This dataset is collected from
Twitter by selecting tweets that contain election hashtags
or politicians’ names. The authors manually label a subset
of tweets with different stances as well as whether the tweet
is hateful/offensive. We consider hateful/offensive tweets as
toxic and the rest as non-toxic.
HateCheck [45]. HateCheck contains a suite of functional
tests for hate speech detection models. Each post is labeled
by different annotators and we consider the majority votes
as the final label of this post.
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SBIC [46]. The Social Bias Inference Corpus (SBIC) is
collected from Reddit, Twitter, and fringe Web communities
such as Gab, Stormfront, and banned subreddits. The dataset
is labeled by MTurk workers. We leverage the v2 version
of it for our study and we consider posts labeled offensive
as toxic posts and the rest as non-toxic posts.
MHS [23]. The Measuring Hate Speech (MHS) dataset
is collected from comments on social media like YouTube,
Twitter, and Reddit. The corpus is labeled by MTurk workers
from the US. We consider comments with hate speech score
≥ 0 as toxic and all others as non-toxic.
ToxicSpan [39]. The ToxicSpan dataset contains ∼10k
English texts filtered from Civil Comments [6] and was
formally introduced as SemEval-2021 Task 5 [39]. Each
text is reviewed by three to seven raters. Each rater is asked
to identify the spans “that constitute anything that is rude,
disrespectful or unreasonable that would make someone
want to leave a conversation” [37]. The lengths of the
highlighted spans were decided by the raters.
Parallel [11]. The Parallel dataset contains 2,279 pairs of
(toxic sentence, detoxified sentence). There are 1,108 unique
toxic sentences after removing duplicates. Note that for each
toxic sentence, the dataset might offer multiple detoxified
versions. We only select the first detoxified version to con-
struct the pair.
ParaDetox [32]. ParaDetox contains 11,939 toxic sentences
and 19,766 paraphrased sentences (detoxified sentences).
Similar to the Parallel dataset, each toxic sentence might
have multiple detoxified versions. We only pick the first
detoxified version to construct the pair. The ParaDetox
dataset constructed by us has 11,939 pairs in total.
Remarks. All the datasets are annotated by human anno-
tators. However, the definition of toxicity might vary across
different datasets. For instance, USElectionHate20 targets
hateful tweets against politicians, while SBIC focuses on
offensive posts from different Web communities. This may
bring challenges for toxicity classifiers such as the Perspec-
tive API [4]. On the other hand, our approach diminishes this
issue, given that we use a learnable prompt that is tailored
for each dataset, effectively capturing the toxic definition
of the dataset through the lens of the positive and negative
samples in each dataset.

4.2. Models

In this paper, we consider prompt tuning over two fam-
ilies of LLM including GPT2 [43] and T5 [44]. Concretely,
we use GPT2-medium, GPT2-large, T5-small, T5-base, and
T5-large in our experiments. In Task 1 (Toxicity Classi-
fication), the learning rate is set to 0.3, we set the total
optimization steps to 2,000 with Adafactor [50] optimizer
and the linear learning rate scheduler with 100 warm-up
steps. For all models, the effective batch size is set to 32
(batch size of 4/8 with gradient accumulation steps of 8/4
for GPT2-L/Others). We follow the prompt tuning method
proposed by Lester et al. [28] in Task 1. In Task 2 (Toxic
Span Detection) and Task 3 (Detoxification), we set the
training epoch to 5, the initial learning rate to 5e-5, and

the optimizer of AdamW [33] with the linear learning rate
scheduler. Different from Task 1 (Toxicity Classification),
we follow the prompt tuning method proposed by Li and
Liang [30] instead as it can achieve better performance in
Task 2 and Task 3. We hypothesize that Lester et al. [28]
initializes the prompt with embeddings that enumerate the
output classes, which makes the method more suitable for
the classification task. In contrast, the prompt tuning method
proposed by Li and Liang [30] has more tunable parameters
than the one proposed by Lester et al. [28]. This method
learns transformer activations that are fixed across examples
at every network layer, allowing subsequent tokens to attend
to this prefix. As such, Li and Liang [30] is a better fit for
Task 2 (Toxic Span Detection) and Task 3 (Detoxification).

5. Task 1: Toxicity Classification

5.1. Experimental Setup

Baselines. Regarding the baselines for Task 1, we con-
sider Google’s Perspective API [4] (Perspective), BERT-base
trained on toxicity classification corpus [1] (ToxicBERT),
and RoBERTa-base trained on toxicity classification cor-
pus [1] (UnRoBERTa). For each baseline, given a text, it
provides a toxicity score ranging from 0 to 1. We consider
the text with a score larger than 0.5 as toxic otherwise non-
toxic. The results with the best threshold (rather than 0.5)
are shown in Table 15 in Appendix. Note that for Perspective
API, on each dataset, we select the perspective score (e.g.,
Severe Toxicity) that achieves the best classification result,
and report the corresponding performance.
Datasets. We use five datasets - HateXplain, USElec-
tionHate20, HateCheck, SBIC, and MHS - to evaluate the
baselines and our models. Note that we observe redundant
samples on HateXplain, USElectionHate20, and SBIC.v2.
However, they are less than 1% and have almost no influence
on the final performance based on our initial evaluation.
Metrics. We consider accuracy, precision, recall, and F1-
score as the evaluation metrics, which are standard metrics
for evaluating the performance of classifiers. Note that we
only report the F1-score on the main paper and put the preci-
sion, recall, and accuracy results in Section A in Appendix.

5.2. Results

Overall Performance. We first show the F1-score of
toxicity classification with toxicity classification in Table 3.
The accuracy, precision, and recall are shown in Table 16,
Table 17, and Table 18 in the Appendix. We find that, in
general, prompt tuning outperforms baselines across dif-
ferent datasets. For instance, on HateXplain, the prompt
tuning with GPT2-L achieves 0.731 F1-score, while the
best baseline (Perspective) only achieves 0.703 F1-score.
The statistical test shows that prompt tuning indeed outper-
forms the best baseline (see Table 14 in Appendix). This
indicates that prompt tuning can indeed unleash the power
of LLM to perform the toxicity classification task. Also, we
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TABLE 3: F1-score of Task 1. The best results of each dataset are highlighted in bold.

Dataset Baselines Prompt Tuning
Perspective ToxicBERT UnRoBERTa GPT2-M GPT2-L T5-S T5-B T5-L

HateXplain 0.703 0.657 0.648 0.016 0.731 0.716 0.731 0.637
USElectionHate20 0.506 0.488 0.425 0.709 0.741 0.673 0.833 0.660
HateCheck 0.784 0.670 0.671 0.758 0.892 0.860 0.841 0.946
SBIC.v2 0.669 0.581 0.581 0.721 0.854 0.820 0.844 0.841
MHS 0.790 0.768 0.775 0.711 0.758 0.762 0.775 0.776

Avg. 0.690 0.633 0.620 0.583 0.795 0.766 0.805 0.772

observe that a larger LM usually provides a more promising
performance on the task, e.g., GPT2-L usually outperforms
GPT2-M and T5-B/L is better than T5-S in general. For
instance, on HateCheck, GPT2-L achieves 0.892 F1-score
while GPT2-M only has 0.758 F1-score. This implies that
the larger capacity of LLM would better guide the prompt
tuning to achieve better performance.

TABLE 4: F1-score of Task 1 with manual prompt.

Dataset GPT2-M GPT2-L T5-S T5-B T5-L

HateXplain 0.080 0.111 0.041 0.276 0.667
USElectionHate20 0.030 0.275 0.213 0.289 0.632
HateCheck 0.056 0.032 0.256 0.008 0.569
SBIC.v2 0.255 0.151 0.110 0.086 0.619
MHS 0.134 0.157 0.205 0.188 0.664

Avg. 0.111 0.145 0.165 0.169 0.630

Comparison to Manual Prompt. As previous work [48],
[8] shows that manual prompts can achieve decent per-
formance in the toxicity classification task, we investigate
how the performance of prompt tuning compares to manual
prompts. We use the below manual prompt following Schick
et al. [48] for our comparison study. Note that we also
investigate using the descriptions of 6 different scores in
Perspective API as the manual prompt and the results show
similar trends.

[INPUT]
Question: Does the above text contain rude, disrespectful,
or unreasonable language?
Answer:[MASK]

Here, [INPUT]is the placeholder for the text to be clas-
sified, “Question: Does the above text contain rude, disre-
spectful, or unreasonable language? Answer:” is our manual
prompt and [MASK]is the classification output by the LLM.
The performance is shown in Table 4. We observe that the
F1-score of the manual prompt is substantially lower than
the prompt tuning approach (see Table 3). For instance, for
the average results, with T5-S, prompt tuning achieves 0.766
F1-score while manual prompt only reaches 0.165. These
results highlight the effectiveness and performance gains
when using prompt tuning instead of manual prompts.
Fewer Training Steps. In our previous experiments, we
use 2,000 training steps during the prompt tuning procedure.
Here, we investigate how the selection of the value for the
training steps affects performance. Figure 1 summarizes the
F1-score for different language models wrt. different train-
ing steps. We observe that the F1-score increases during the

TABLE 5: F1-score of Task 1 with 500 training samples on
each dataset.

Dataset T5-S T5-B T5-L

HateXplain 0.624 0.666 0.655
HateCheck 0.865 0.897 0.654
SBIC.v2 0.772 0.782 0.764
MHS 0.659 0.694 0.644

Avg. 0.730 0.760 0.679

initial steps and at some point, the F1-scoregains diminish.
For instance, on HateXplain (see Figure 1a), from 200 to
800 steps, the F1-score with GPT2-L increases from 0.603
to 0.713, and it stabilizes at 0.731 with 2,000 steps. This
indicates that the prompt tuning can adapt to the downstream
task faster, which is important as it can save both time and
computational power.
Fewer Training Samples. In previous experiments, we
randomly sample 80% of the dataset as the training dataset
and the rest 20% as the testing dataset. Here, we investigate
whether the prompt tuning can still work well with fewer
training samples. We use the T5 models as the case study
as we observe from Figure 1 that T5 models are relatively
stable and can achieve good performance in general. Con-
cretely, for each dataset, we randomly select 500 training
samples to form the new training dataset and optimize the
prompt for 1,000 steps only. Note that we exclude the
USElectionHate20 dataset for this assessment as it only has
586 training samples, which is close to 500. The results
are summarized in Table 5. We observe that although the
performance is lower than training with full data, it is still
comparable to or even better than the baselines. Take SBIC
as an example, with 500 samples, the T5-B model achieves
0.782 F1-score, which is lower than training with full data
(0.844) but still higher than the Perspective API with 0.669
F1-score (see Table 3). Note that 500 training samples are
only around 0.5% of the SBIC’s original training dataset,
which is a quite small fraction. This provides us with a new
perspective of view to transfer the toxicity-related research
into new datasets: instead of using the mature published
APIs like Perspective, leveraging prompt tuning with a small
fraction of data being labeled is also a promising way to
reach desirable performance.
Prompt Transferability. Finally, we assess the gener-
alizability power of prompt tuning by investigating the
performance when training a prompt on one dataset and
testing on another. Here we take the T5-base model as the
pre-trained LLM for prompt tuning. Table 6 displays the
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Figure 1: F1-score of Task 1 with different training steps.

TABLE 6: F1-score of Task 1 (Toxicity Classification) when the training dataset is different from the transfer dataset.

Training Dataset Transfer Dataset
HateXplain USElectionHate20 HateCheck SBIC MHS

HateXplain - 0.488 0.373 0.419 0.688
USElectionHate20 0.650 - 0.472 0.485 0.733
HateCheck 0.543 0.297 - 0.534 0.579
SBIC.v2 0.638 0.404 0.646 - 0.655
MHS 0.694 0.581 0.610 0.518 -

results. We can observe that in some cases, the prompt can
successfully transfer to another dataset. For instance, the
prompts trained on USElectionHate20 can achieve 0.650 F1-
score on HateXplain and 0.733 F1-score on MHS, which
are about 5% lower than the baselines (0.703 accuracy
on HateXplain and 0.790 accuracy on MHS according to
Table 3). However, the performance is less satisfying in
some other cases where the F1-score is below 0.500. We
also notice that the prompt trained on the MHS dataset can
better transfer to other datasets. For instance, after training
on MHS, the F1-score is 0.694 on HateXplain and 0.581
on USElectionHate20, which is comparable or even better
to the F1-score provided by the Perspective API (0.703
and 0.506). This can be credited to the fact that MHS
covers various kinds of toxicity including insult, humiliation,
violence, hate speech, etc. By fine-tuning with the diverse
distributed data, the learned prompt is more general and can
better transfer to other datasets. On the other hand, prompts
learned from dataset like HateXplain is less effective to
transfer into other datasets. We suspect this is because these
datasets have a relatively narrow definition of toxicity. In
general, the prompt learned from a more diverse dataset with
different types of toxicities may have a better generalization
ability to other datasets. Meanwhile, as we have shown
before (see Table 5), the prompts can better fit different
downstream datasets with the help of only a small fraction
of labeled samples, which further demonstrates the efficacy
of prompt learning.

Comparison with Fine-tuning. Here we take T5-S on
USElectionHate20 as an example. We observe that prompt
tuning reaches 0.712 accuracy within 6 minutes, while the
best accuracy (evaluated every 200 steps) for fine-tuning
the whole model is only 0.619 within 100 minutes. This
is because the LLM is trained with a large corpus and can
generate informative representations of the inputs. Prompt
tuning can guide the model better leverage the representation
for the downstream tasks with a small number of parameters,
which can adapt faster to new tasks compared to finetuning,

especially with fewer training samples.
Robustness. Given the misspellings in the training pro-
cedure, we do observe that prompt tuning can adapt to
the testing posts with misspellings. E.g., on 100 randomly
selected toxic posts on HateCheck, there do exist misspelling
words like “tr4sh,” “4ssholes,” “Fukc,” and “crippl3.” And
prompt tuning with T5-S can correctly identify them (98%
accuracy). We further perturb these 100 evaluation posts
by randomly repeating one character of each toxic word
several times or adding extra spaces inside the toxic word,
e.g., “sluttttts,” and “w h o r e.” Note that we leverage
such perturbations since we also observe them in the toxic
texts and such perturbations are also considered by previous
work [19]. We observe that, without further prompt tuning,
the evaluation accuracy on these modified 100 posts is still
97%, which remains almost unchanged. This implies that
prompt tuning is robust to adversarial perturbation.
Error Analysis. Although prompt tuning outperforms other
baselines in most cases, wrongly predicted texts still exist
(20 in total). We take the USElectionHate20 dataset (with
T5-B) as a case study to analyze the wrongly predicted
cases. As shown in Table 7, the main reason that causes the
wrong prediction is the wrong label, e.g., in the example, we
observe some toxicity against Trump, but the text is labeled
as non-toxic. Also, we observe that some variations of the
slur words and toxic hashtags may cause wrong predictions.
Last, prompt tuning is less effective against some texts with
implicit toxic content.
Takeaways. Our results show that prompt tuning out-
performs baselines in the toxicity classification task with
sufficient labeled data. Also, the detection performance is
still promising with fewer training steps/samples. Another
observation is that directly transferring the prompt trained
on one dataset into another dataset might be less effective
as the two datasets might share different types of toxicity.
However, this can be addressed by adding only a small
number of labeled samples from the distribution of the
testing dataset. Our results suggest that prompt tuning can
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TABLE 7: Failed examples on USElectionHate20. Note that
we shorten long texts for presentation purposes.

Reason Example Percentage (%)

Wrong ground truth

@realDonaldTrump Why
would the government
stop this when our
President is among those
guiltiest? Money launder
much,Trump? ...

50

Slur word variation F@&amp;CK, BS 10

Hashtag hate
#FakeNewsMediaClowns,
#LyinSleepyWiredUpJoe-
Biden

5

Other

The biggest threat to our
nation dwells within the
White House. Vote Biden.
Pass it on! ...

35

also serve as an alternative tool to assist the annotation
process, especially for the newly emerging toxicity.

6. Task 2: Toxic Span Detection

6.1. Experimental Setup

As we observed from Task 1 (Toxicity Classification),
T5 models and GPT2 models share similar performance. In
the following evaluation, we mainly leverage T5 models as
our pre-trained LLMs.
Baselines. We consider three baselines, i.e., BiLSTM [18],
BERT [12], and SPAN-BERT [22]. Concretely, we fol-
low the default hyper-parameters setting of Pavlopoulos et
al. [37]. We train/fine-tune the models for 100 epochs on
the training partition of the ToxicSpan dataset and evaluate
it on its test partition.
Datasets. We use the ToxicSpan dataset to evaluate the
baselines and our models.
Metrics. We follow previous work [37] and leverage F1-
score as the main evaluation metric. Note that the F1-score
in Task 2 is different from Task 1. Concretely, for the i-th
sample, we consider its ground truth span (i.e., the character
offsets) as Si

g and the predicted span as Si
p. The sample-level

precision P t , recall P t, and F1-score F t
1 are defined as the

following:
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i
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Note that if the ground truth span Si
g and the predicted

span Si
p are both empty, we consider F t

1(S
i
g, S

i
p) = 1

(F t
1(S

i
g, S

i
p) = 0 if one of them is empty). Then, we average

the F1-score for all samples to obtain a single F1-score.

6.2. Results

TABLE 8: Performance of Task 2 (Toxic Span Detection).

Method F1 Time Cost (Second)

BiLSTM 0.566 94
BERT 0.629 1,828
SPAN-BERT 0.640 3,334

PT (T5-S) 0.571 175
PT (T5-B) 0.615 363
PT (T5-L) 0.643 838

1 2 3 4 5
Epoch

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700

F
1

S
co

re

T5-L T5-B T5-S

Figure 2: F1-score of Task 2 (Toxic Span Detection) with
different training epochs.

As shown in Table 8, prompt tuning achieves comparable
or even better performance than the baselines. For instance,
prompt tuning on T5-L reaches an F1-score of 0.643, which
is higher than BiLSTM (0.566), BERT (0.629), and SPAN-
BERT (0.640). On the other hand, prompt tuning achieves
this outstanding performance with much less time. For ex-
ample, prompt tuning on T5-L only takes 838 seconds, while
the SPAN-BERT needs 3,334 seconds for the fine-tuning
process. This is because prompt tuning has fewer parameters
to be updated compared to those of fine-tuning the LM.
Another observation is that the prompt tuning achieves better
performance with a larger LM, e.g., the F1-score is 0.571,
0.615, and 0.643 on T5-S, T5-B, and T5-L, respectively.
This suggests that a larger capacity of LMs would facilitate
the span detection process as well.
Effects of Training Epochs. We then investigate whether
prompt tuning is still effective with fewer training epochs.
As shown in Figure 2, prompt tuning already achieves re-
markable performance even in the first epoch. For instance,
with only 1 epoch on the T5-L model, prompt tuning can
achieve 0.618 F1-score, which is close to 0.643 with 5
epochs. This further demonstrates the efficacy of prompt
tuning in adapting to new tasks.
Prompt Transferability. As we only have one dataset
for Task 2, to investigate the prompt transferability, we
manually label the toxic spans of 100 randomly sampled
posts from the Parallel dataset (we used in Task 3) and form
a new testing dataset. Given the prompt trained with T5-L
on ToxicSpan, we observe that our method can correctly
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identify the toxic spans on 85% of posts. We then dive
deeper into the failed cases and find that most of them
belong to Categories 1 and 8 as shown in Table 9. In general,
this case study demonstrates that prompt tuning can indeed
transfer to out-of-distribution data.
Comparison with Fine-tuning. For Task 2, we also com-
pare the performance of prompt tuning with fine-tuning.
Taking T5-L model as an example, we observe that, with the
same training epochs, prompt tuning yields slightly better
performance (0.643 F1-score) than fine-tuning (0.628 F1-
score) and costs less time. This indicates that prompt tuning
can unleash the power of LLM with only limited effort.
Robustness. Following the perturbation strategy in Task
1, we perturb 100 randomly selected posts from TSD and
compare the performance with the original posts. We ob-
serve that prompt tuning reports the same toxic span for 57
perturbed posts. For 38 perturbed posts, prompt tuning failed
to detect or can only detect part of the toxic spans. For the
rest 5 perturbed posts, prompt tuning can obtain even better
toxic spans than their original version. Compared to Task 1,
prompt tuning is less robust in Task 2. This can be credited
to the lack of perturbed toxic spans in the training dataset,
which may be mitigated by introducing perturbation during
the training phase as well.
Error Analysis. We conduct a case study regarding the
wrongly detected spans. Concretely, we randomly select 100
test samples with wrongly predicted spans and manually
verify the possible reasons. Then, we categorize the reasons
into 9 categories (see Table 9). Note that each test sample is
manually verified by three annotators to put into a category
with full agreement. We find that a substantial percentage of
wrong span predictions in categories 2, 3, 4, and 5 (47%) are
caused by the problematic ground truth label. For instance,
in category 2, the ground truth span contains both toxic and
non-toxic text. Note that the ground truth inconsistency is
caused by the fact that the lengths of the toxic spans were
decided by the raters [39]. The ToxicSpan dataset accepts
character offsets that at least two raters have included each
character offset in their spans. Category 2 actually covers
the corner cases relating to such human errors/bias when
building the ToxicSpan dataset. Nevertheless, our method
successfully detects the real toxic span “cowards” from this
example. Also, in category 3, the toxic span is not labeled
by the ground truth. However, they are accurately detected
by our method. We also observe that prompt tuning may fail
to identify some ambiguous toxic spans such as the “embar-
rassment” example shown in category 4 (Table 9). A more
interesting case (category 5) shows that our method can
dig out the missing toxic span from the text. For instance,
the ground truth span only contains “stupid”, while our
method discovers “idiots” as well. This case demonstrates
the potential of prompt tuning to become an effective tool
to improve the annotation quality of toxic spans. We also
notice that the cases in categories 1, 6, 7, 8, and 9 (53%)
are caused (or partially caused) by our method. For category
1, we observe that our method repeats the original sentence
without any change. We then diver deeper into those samples
and find that they are mainly short sentences or contain

less toxic spans, which may lead the prompt to become
less sensitive to these cases. For category 6, we observe
that our method successfully generates the sentence without
toxic spans, but the mapping algorithm fails to provide an
exact span area as the ground truth span, e.g., prompt tuning
includes the quota into the toxic span as well since it serves
as an emphasize to the toxic expression. In category 9, we
observe that our method overlooks the ground truth span,
but surprisingly detects a new span like the “crap” example.
Those wrong cases show that toxic span detection from the
view of prompt tuning is not perfect, but prompt tuning
shows its great potential in facilitating and correcting the
toxic span detection process. For instance, it can serve as
an assistant tool for better annotation quality.
Takeaways. We observe that prompt tuning can achieve
comparable performance with the best conventional method,
i.e., SPAN-BERT, but with much less time cost. Also, the
performance is relatively stable even with fewer training
epochs. This further demonstrates the potential of leveraging
prompt tuning to tackle the toxic span detection tasks and
provides evidence for better span labeling. We also show
that prompt tuning, in some cases, can identify additional
toxic spans not labeled by the ground truth (i.e., human
annotators).

7. Task 3: Detoxification

Different from previous tasks that only focus on toxicity
detection, this task aims to detoxify the given text while
preserving the corresponding semantic meaning.

7.1. Experimental Setup

Baselines. We use the vanilla version of BART [29] and the
DetoxBART [32] as the baselines. Note that the DetoxBART
is also trained on the ParaDetox dataset for 10,000 epochs
according to Logacheva et al. [32].
Datasets. We use Parallel and ParaDetox datasets to eval-
uate the performance of baselines and prompt tuning.
Metrics. To quantify the quality of the detoxification, we
consider two aspects, i.e., the detoxification effectiveness
and the utility of the generated sentences. For detoxification
effectiveness, we leverage the Perspective API to quantify
the toxicity level change since it offers the best performance
among all baselines and is robust on different datasets.
Specifically, we first measure the average toxicity score
change and then quantify the percentage of texts that has
high toxicity score (0.7 or 0.9), following the guidelines of
Perspective API.3 Note that we use Tavg, T0.7, and T0.9

to denote the average toxicity score of texts, the ratio of
texts that have toxicity score over 0.7, and the ratio of texts
that has toxicity score over 0.9, respectively. Regarding the
utility, we consider five different metrics. We first consider
BLEU score as the utility evaluation metric, which is also
widely used in previous work [54], [32]. Then we quantify
the semantic preservation by comparing the text embeddings

3. https://developers.perspectiveapi.com/s/about-the-api-score.
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TABLE 9: Failed examples on Task 2. Green denotes the ground truth span is correctly predicted by the algorithm. Pink
denotes the ground truth span is not detected by the algorithm. Orange denotes the span is not in ground truth but is
detected by the algorithm.

Category Reason Text Example Percentage (%)

1 Labeled by ground truth (GT) but
not by our method.

they’re not patriots. they’re vandals , thieves , and bullies . they’ve
plastered a facade of patriotism over their outrage at being expected
to obey the law.

17

2 GT contains both toxic and non-
toxic spans.

adn is endorsing, without officially endorsing. bunch of
cowards !!!

9

3 GT is none, but our method labels
more toxic spans.

he’s as stupid as those commie propagandists here who tried to at-
tribute poor potato harvests to potato beetle supposedly being dropped
from cia airplanes over gdr, czechoslovakia or poland. this was so
stupid and out of sync with real world that it was subject of

snickering among local populations. obviously you will not read that in
books written by last marxists in the world, that is, western academics.

15

4 GT span is non-toxic. justin is an embarrassment to canada. he needs a muzzle. he needs
a brain.

6

5 GT only contains parts of toxic
spans, and our method detect more.

the money you idiots give these people are why they are here. stop
feeding the fire. unbelievable how stupid people can be....drops mic

17

6 Error caused by the matching algo-
rithm

i’ll ignore your “ stupid ” insult and reply anyway... 12

7 Our method marks extra non-toxic
span as toxic.

why don’t you call yourself dickhead instead of pubic ... good
grief.

12

8 All GT are toxic, but our method
ignores some of them.

when you consider the source - he writes like the trump we’ve all
come to know - ”i could stand in the middle of 5th avenue and shoot
somebody and i wouldn’t lose voters”, a racist , misgynistic , liar
who only brings hate to the table.

8

9 GT is toxic, but our method instead
finds other toxic.

uh-no, keep voting for failed liberal idiocy that guarantees results
ala detroit, chicago, etc. you’ll wish your body had only some crap
rather than gangbanger gunfire.

4

similarity between the original text and the detoxification
text. Concretely, we consider two types of embedding fol-
lowing [32], i.e., contextual string embeddings [25] from
flairNLP [2], which is denoted as SIM (F), and SIMILE
proposed by Wieting et al. [60], which is denoted as SIM
(W). We denote the two types of embedding similarities as
SIM (F) and SIM (W), respectively. Besides, we also use
the token-level perplexity [43] to measure the fluency of the
text, where lower perplexity denotes better fluency.

7.2. Results

The detoxification performance on different datasets is
shown in Table 10. We observe that DetoxBART performs
slightly better in detoxifying the text than prompt tuning.
For instance, on ParaDetox, DetoxBART reduces the Tavg,
T0.7, and T0.9 to 0.180, 0.013 and 0, respectively while
prompt tuning on T5-L can reduce them into 0.213, 0.037,
and 0.003 respectively. This means that ParaDetox has better
detoxification effectiveness than prompt tuning. However,
we also observe that the text quality generated with prompt
tuning is better than the DetoxBART. For instance, on
ParaDetox, compared to DetoxBART, the PT (T5-B) has
a higher BLEU score, SIM (W), SIM (F), while attaining
a smaller TokenPPL. This indicates the text generated by
prompt tuning has better fluency and can better preserve

the semantic meaning of the original text. In general, we
consider both DetoxBART and prompt tuning as successful
methods as they can largely reduce the toxicity level while
preserving the semantic meaning and fluency of the original
text.
Different Epochs. We then investigate how the train-
ing epochs affect the detoxification effectiveness and the
model’s utility regarding semantic preservation. The results
are shown in Figure 4 and Figure 3, respectively. From
Figure 4, we have three observations, first, we find that more
training epochs lead to better detoxification performance.
For instance, on Parallel, prompt tuning on T5-L can reduce
the Tavg to 0.616 with 1 epoch, while decreasing to 0.397
with 5 epochs. Second, prompt tuning on larger models lead
to better detoxification performance, e.g., T5-L performs the
best while T5-S performs the worst. This is expected as a
larger model can represent the data in a more informative
way thus better guiding the prompt tuning in the direction
of detoxification. Third, in a larger dataset such as Paradox,
prompt tuning already achieves good detoxification perfor-
mance in the early epoch, e.g., the first or second epoch. Our
results further exemplify the effectiveness of prompt tuning
as the time cost is much less than training the detoxification
model like DetoxBART.

Regarding utility, we find that the utility is relatively
stable for different models in different epochs. This indicates
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TABLE 10: Performance of Task 3. The arrow denotes which direction is for better results.

Dataset Method Tavg ↓ T0.7 ↓ T0.9 ↓ BLEU ↑ SIM (W) ↑ SIM (F) ↑ TokenPPL ↓

Parallel

None 0.755 0.676 0.135 1.000 1.000 1.000 227.834
GroundTruth 0.178 0.009 0.000 0.491 0.757 0.669 550.725
BART 0.754 0.676 0.135 0.999 0.999 0.998 227.904
DetoxBART 0.242 0.036 0.000 0.708 0.879 0.843 236.654
PT (T5-S) 0.573 0.463 0.077 0.835 0.927 0.939 326.696
PT (T5-B) 0.408 0.256 0.032 0.770 0.898 0.909 301.597
PT (T5-L) 0.396 0.329 0.031 0.754 0.881 0.889 284.861

ParaDetox

None 0.775 0.778 0.134 1.000 1.000 1.000 330.829
GroundTruth 0.166 0.000 0.000 0.633 0.828 0.778 393.800
BART 0.774 0.777 0.133 0.999 0.999 0.998 331.250
DetoxBART 0.180 0.013 0.000 0.688 0.862 0.832 438.242
PT (T5-S) 0.253 0.081 0.007 0.760 0.910 0.905 593.442
PT (T5-B) 0.224 0.051 0.005 0.754 0.920 0.897 499.851
PT (T5-L) 0.213 0.037 0.003 0.743 0.916 0.886 404.565

that those LLMs have good generation ability in general.
Prompt Transferability. We then take ParaDetox as the
training dataset and Parallel as the testing dataset to investi-
gate the generalizability power of prompt tuning. With T5-B
trained on ParaDetox, the Tavg, T0.7, and T0.9 on Parallel
drop to 0.251, 0.027, and 0.000, respectively, which are even
better than the original results shown in Table 10 (0.408,
0.256, and 0.032). One possible reason is that ParaDetox
contains a larger number of training data, which better
guides the prompt for the detoxification tasks and makes
it more transferrable to other datasets like Parallel.
Comparison with Fine-tuning. For Task 3, we take the T5-
L model on Parallel as a case study. We observe that, prompt
tuning can reduce the toxicity of posts to a larger extent,
e.g., the Tavg of prompt tuning is 0.396, while the value is
0.437 for fine-tuning. On the other hand, we find that fine-
tuning can generate more fluent sentences, e.g., the BLEU
score is 0.795 for fine-tuning, while only 0.754 for prompt
tuning. In general, prompt tuning can still be considered as
a lightweight plugin to adapt LLMs to new tasks.
Robustness. We again follow the perturbation strategy in
Task 1 to perturb 100 randomly selected posts from the
Parallel dataset. We observe that, for the original version of
these 100 posts, prompt tuning (with T5-L) can reduce the
Tavg, T0.7, and T0.9 from 0.725, 0.590, and 0.130 to 0.357,
0.120, and 0.010, respectively, while the values are 0.402,
0.180, and 0.020 for the perturbed 100 posts, which is close
to detoxify the original version. This indicates that prompt
tuning is relatively robust in Task 3.
Case Study. We then dive deeper into the generated text
of the ParaDetox dataset and check them manually. We
consider both successful cases (C1 and C2) and failed cases
(W1-W5). Table 11 shows the examples of these cases.
In most cases, prompt tuning is powerful in reducing the
toxicity level of the sentence while preserving its semantic
meaning. For example, in C1, our method achieves similar
detoxification performance (toxicity score decreases from
0.827 to around 0.163). Also, our method preserves the se-
mantic meaning properly. In C2, we observe that our method
can even detoxify the sentence better than the ground truth.

Among the 2,388 text samples, we observe that there
are 88 detoxification samples (3.68%) that still have a high

toxicity score, i.e., larger than 0.7. We manually check
those samples and find that they can be categorized into
5 different wrong categories (W1-W5). For W1 (6/88), we
observe that the sentence is hard to be detoxified, and the
ground truth sentence is identical to the original sentence.
For W2 (52/88), prompt tuning just directly repeats the
original sentence without any modification. For W3 (27/88),
we observe that prompt tuning indeed preserves the semantic
meaning and reduces the toxicity level. We acknowledge that
for some implicit toxic content, as shown in the example,
it might be harder for the prompt model to detect and
eliminate them perfectly. For W4 (1/88), prompt tuning ac-
tually provides better semantic preservation compared to the
ground truth. For W5 (1/88), we observe that prompt tuning
just considers “i jus clicked tht nasty shit” as toxic parts
and directly removes them. During the labeling, we notice
that there indeed exists a trade-off between detoxification
and semantic preservation. However, in most cases, prompt
tuning can do well on both aspects (see also Table 10). It
indicates that prompt tuning can be a good tool for assisting
the detoxification task, e.g., providing possible solutions for
the annotators to make their decision. Currently, our current
prompt tuning is based on paired datasets, which is similar
to machine translation. However, such datasets are usually
small. One promising direction that we aim to explore in
our future work is to combine the paired dataset with the
unpaired dataset (i.e., it only contains sets of toxic and non-
toxic contents but without the pairs) to jointly fine-tune the
prompt.

Takeaways. We empirically show that prompt tuning can
reduce the toxicity level to a large extent and better preserve
the semantic meanings. An interesting observation is that the
semantic meaning of the original sentence can be properly
preserved even with fewer training epochs due to the strong
representation ability of the LLM. However, with fewer
epochs, the detoxification performance might be less sat-
isfying as the process of toxic to non-toxic contents is more
difficult than previous tasks and needs more learning steps to
better guide the prompt tuning. The effective detoxification
and semantic preserving abilities make prompt tuning a
strong competitor to conventional methods in the detoxi-
fication task.
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Figure 3: Utility of Task 3 with different training epochs.

TABLE 11: Examples on Task 3. Here we consider successfully detoxified cases (with toxicity score less than 0.7) as the
correct cases (C), and those cases with a larger than 0.7 toxicity score are considered as wrong cases (W).

Category Original Ground Truth Generated

C1 if assad wasn ’t such a dick then involve-
ment would not be necessary. [0.827]

if assad wasn’t such that bad involvement
would not be necessary. [0.163]

if assad wasn ’t such a bad person
then involvement would not be necessary.
[0.159]

C2 your reading comprehension is more
fucked up than a football bat. [0.835]

your reading comprehension is worse than
a football bat. [0.575]

your reading comprehension is not good
[0.355]

W1 if you hold a knife against the cops you
deserve to be shot! [0.827]

if you hold a knife against the cops you
deserve to be shot! [0.827]

if you hold a knife against the cops you
deserve to be shot ! [0.774]

W2 did they bring along a signedxglossy of
boy wonder and castro as a token of their
stupidity ? [0.770]

did they bring along a signedxglossy of
boy wonder and Castro as a token [0.133]

did they bring along a signedxglossy of
boy wonder and castro as a token of their
stupidity? [0.754]

W3 someone should give this idiot a slap on
the head. [0.939]

someone should give him a lesson. [0.257] someone should give him a slap on the
head. [0.721]

W4 i hate guys with a bitch mouth sit the fuck
down nigga [0.985]

I hate bad guys [0.440] i hate guys with a bad mouth sit down
[0.721]

W5 wtf ! ! ! ! ! ! ! ! ! ! i jus clicked tht nasty
shit [0.979]

I just clicked something. [0.042] wtf!!!!!!!!!!!!!!!!!!!!!!!!!!! [0.713]
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Figure 4: Detoxification effectiveness of Task 3 with differ-
ent training epochs.

8. Related Work

Prompt Learning. Prompt learning is a new paradigm in
natural language processing (NLP) [31]. It allows users to
directly specify the task they want in natural language for the
pre-trained language model to interpret and complete. This
paradigm paves way for using a single LLM as the universal
solver for various understanding and generation tasks, such
as text classification [47], machine translation [44], seman-
tic parsing [52], question answering [20], etc. To unleash
the full potential, research on prompt learning has been
investigating automatically inducing the discrete/continuous
prompts [30], [57], multi-prompt learning [42], [20], prompt
training, and fine-tuning strategy [41], [13], transferability
of prompts [40], etc. Our work is built on top of prompt
learning. We conduct the first systematic hateful language
study from the prompt tuning perspective.
Toxicity Classification. The problem of toxic online con-
tent is a longstanding and challenging [5] problem affecting
our society. Motivated by the impact that the problem has on
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both the online and offline world, the research community
and the industry devoted substantial resources to developing
models to detect toxic content. One of the most used tools
for assessing toxicity online is Perspective API [4], a set
of machine learning models trained on a human-annotated
dataset, released by Google. The Perspective API, given a
piece of text, provides a set of scores that correspond to how
likely the text is toxic, attacking specific identities, sexually
explicit, etc. At the same time, Google released its annotated
dataset, which enabled other researchers to develop more
models aiming to tackle the problem. One such example
is Detoxify [1], which leverages the power of transformer
models to detect toxicity in text, across multiple languages.

Davidson et al. [10] highlight that there is a distinc-
tion between offensive language and hate speech. Also, the
authors release HateSonar, a machine learning model, that
identifies whether a piece of text contains offensive language
or hate speech. As previous research notes [61], however,
the HateSonar classifier performs poorly compared to the
Perspective API, when tested on comments left on news
articles. Zimmerman et al. [66] highlight that by leveraging
deep learning ensembles, we can improve the performance
of previous models in detecting hate speech on Twitter.
Other work focuses on identifying the targets of toxic con-
tent [53], [14], or on identifying specific forms of toxic
content such as Antisemitism [62], [36], Islamophobia [58],
and Sinophobia [56], [65].

All of the above-mentioned efforts in detecting toxic
content are based on fine-tuning existing models or devel-
oping dedicated classifiers focusing on the specific task of
detecting toxic content. Recently, the pre-train and prompt
paradigm is becoming increasingly popular, hence the re-
search community started investigating how prompt learning
can be leveraged to tackle the problem of toxic content
online. In particular, Chiu et al. [8] use OpenAI’s GPT-3
language model to investigate the performance of prompt
learning in the task of detecting racist or sexist content. They
find that by using a pre-defined prompt and a few-shot learn-
ing setting, they can identify racist or sexist content with an
accuracy of up to 85%, highlighting that prompt learning can
play a role in identifying toxic content. Similarly, Schick et
al. [48] find that language models can identify toxic content
and whether the generated text contains undesirable biases,
all using prompt learning techniques. Also, they propose a
de-biasing method, which helps the language model generate
less biased content. Overall, both works [48], [8] highlight
that large language models and prompt learning can detect
toxic content with a decent performance. While this previous
work is essential, it is limited in the sense that it focuses only
on the toxicity classification task and, more importantly,
relies on manual pre-defined prompts. In contrast, our work
provides a comprehensive evaluation of how large language
models and prompt learning can assist in tackling the prob-
lem of toxic content by considering multiple tasks (toxicity
classification, toxic span detection, and detoxification). Also,
we show that by using prompt tuning techniques, instead
of pre-defined prompts, we can substantially increase the
performance of the language models in the three tasks.

Toxic Span Detection. Toxic span detection [39] aims
to identify the specific span that makes the sentence to be
toxic. Pavlopoulos et al. [37] treat this task as the sequence
labeling task to annotate the suspicious span in the sentence.
Three models including BiLSTM [18], BERT [12], and
SPAN-BERT [22] are considered. We instead formalize this
task as a generation task and show that prompt-tuning can
achieve comparable performance to the SPAN-BERT but
with much less computational time.
Detoxification. Detoxification aims to reduce the toxicity
level of the sentence while preserving the semantic meaning
to the largest extent. It is similar to neural style transfer [21].
Laugier et al. [26] propose a self-supervised method named
CAE-T5 to learn the transformation from toxic to civil
from the unpaired corpus. Logacheva et al. [32] develop
DetoxBART which fine-tunes the BART model on the Pa-
raDetox dataset to achieve better performance. Our work is
substantially different from their work as we do not need to
fine-tune the model but just the prompt, which is less costly.
We notice that conventional methods like DetoxBART can
achieve better detoxification performance while prompt tun-
ing can better preserve semantic information.

9. Conclusion

In this paper, we performed the first extensive evaluation
of using prompt learning with tunable prompts (prompt
tuning) to tackle the problem of toxic content. Particularly,
we focused on three tasks (toxicity classification, toxic span
detection, detoxification) and assessed the performance of
prompt tuning and how it compares to state-of-the-art base-
lines in these tasks. Among other things, we find that prompt
tuning can achieve comparable or even better performance
compared to the baselines. As shown by our evaluation,
integrating prompt tuning into toxic content research can
better help to improve the dataset quality and the model
utility as the toxicity label (Task 1), predicted toxic span
(Task 2), and detoxified sentence (Task 3) can be used to
assist the labeling procedure.
Limitations. Naturally, our work has some limitations.
First, we use GPT2 and T5 as the LLMs to demonstrate the
efficacy of prompt tuning. Our evaluation has demonstrated
that prompt tuning can perform well even with these LLMs,
and larger models generally perform better (see Table 3).
While we acknowledge that conducting experiments with
larger models with billions of parameters would be appeal-
ing, our hardware capabilities limit such endeavors. Also,
we use Perspective API as an indicator to quantify the
toxicity level (e.g., on Task 3), which is likely to yield some
false positives/false negatives. Nevertheless, detecting toxic
content is an open research challenge and the Perspective
API is also leveraged by previous work [48], [51], indicating
that it is a good proxy for assessing toxic content. Despite
these limitations, we believe that our research can pave new
ways for the study of toxic content, as researchers with
limited computing resources can utilize currently available
pre-trained large language models to perform important
toxicity-related tasks with acceptable performance.
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Appendix A.
Task 1 Performance with Other Metrics

General Result. Table 16, Table 17, and Table 18 show
the accuracy, precision, and recall of Task 1.
Manual Prompt. Table 12 shows the accuracy, precision,
and recall of Task 1 with the manual prompt.
Fewer Training Steps. Figure 5, Figure 6, and Figure 7
show the accuracy, precision, and recall of Task 1 with fewer
training steps
Fewer Training Samples. Table 13 shows the accuracy,
precision, and recall of Task 1 with fewer training samples.
Prompt Transferability. Table 19, Table 20, and Table 21
shows the accuracy, precision, and recall of Task 1 when the
training dataset is different from the transfer dataset. Here
the model architecture is T5-B.

Appendix B.
Statistical Test

To investigate whether the performance difference is
significant, we perform the paired t-test on the predictions of
the best baseline and the best prompt tuning model in Task
1. The results are shown in Table 14. We observe that, on all
datasets, the p-value is less than 0.01, which indicates that
the performance is indeed significantly different. On Task 2,
we compare the performance between SPAN-BERT and PT
(T5-L) with the Mann-Whitney U test. The p-value (0.936)
indicates that the performance of SPAN-BERT and PT (T5-
L) are similar. Note that we do not perform the statistical
test on Task 3 as it has multiple metrics to evaluate the
performance.

Appendix C.
Task 1 Performance with Dynamic Threshold

The performance with the dynamic threshold (rather than
0.5) for Perspective API is shown in Table 15. We observe
that prompt tuning still outperforms Perspective API in most
of the cases.

Appendix D.
Meta-Review

D.1. Summary

This paper considers whether large language mod-
els (LLMs) and prompt learning can outperform existing
purpose-built services for detecting toxicity in text. The
paper makes this comparison across three tasks: toxicity
classification, toxic span detection, and detoxification.

D.2. Scientific Contributions

1) Creates a New Tool to Enable Future Science

D.3. Reasons for Acceptance

1) This paper shows that LLMs and prompt learning
can be successfully used for toxicity classification,
span detection, and detoxification, sometimes with
better performance and lower computation time
compared to existing purpose-built services.

2) Toxic content online is a well known problem, but
this paper proposes a new approach to tackle the
problem using LLMs and prompt learning.
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TABLE 12: Accuracy, precision, and recall of Task 1 with manual prompt.

Dataset Accuracy Precision Recall
GPT2-M GPT2-L T5-S T5-B T5-L GPT2-M GPT2-L T5-S T5-B T5-L GPT2-M GPT2-L T5-S T5-B T5-L

HateXplain 0.482 0.475 0.491 0.485 0.504 0.356 0.362 0.351 0.464 0.502 0.045 0.066 0.022 0.196 0.994
USElectionHate20 0.449 0.508 0.500 0.500 0.517 0.125 0.524 0.500 0.500 0.510 0.017 0.186 0.136 0.203 0.831
HateCheck 0.510 0.506 0.508 0.498 0.587 0.778 0.800 0.526 0.333 0.595 0.029 0.017 0.169 0.004 0.545
SBIC.v2 0.533 0.516 0.477 0.454 0.530 0.630 0.618 0.370 0.265 0.521 0.160 0.086 0.065 0.052 0.764
MHS 0.470 0.488 0.452 0.512 0.561 0.366 0.442 0.372 0.562 0.538 0.082 0.095 0.141 0.113 0.867

Avg. 0.489 0.499 0.486 0.490 0.540 0.451 0.549 0.424 0.425 0.533 0.067 0.090 0.107 0.114 0.800

TABLE 13: Accuracy, precision, and recall of Task 1 with 500 training samples on each dataset.

Dataset Accuracy Precision Recall
T5-S T5-B T5-L T5-S T5-B T5-L T5-S T5-B T5-L

HateXplain 0.633 0.627 0.664 0.641 0.603 0.672 0.608 0.744 0.638
HateCheck 0.862 0.890 0.587 0.843 0.849 0.562 0.888 0.950 0.781
SBIC.v2 0.757 0.770 0.719 0.728 0.741 0.659 0.823 0.829 0.908
MHS 0.650 0.678 0.668 0.643 0.661 0.694 0.676 0.731 0.602

Avg. 0.726 0.741 0.659 0.714 0.714 0.647 0.749 0.813 0.732
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Figure 5: Accuracy of Task 1 with different training steps.
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Figure 6: Precision of Task 1 with different training steps.
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Figure 7: Recall of Task 1 with different training steps.

TABLE 14: Paired t-test on Task 1 performance.

Dataset Baseline (F1) Prompt Tuning (F1) p-value

HateXplain 0.703 0.731 2.33e-51
USElectionHate20 0.506 0.833 1.42e-9
HateCheck 0.784 0.946 8.07e-8
SBIC.v2 0.669 0.854 0.00
MHS 0.790 0.776 7.93e-50

TABLE 15: Task 1 performance with dynamic threshold.

Dataset Baseline Baseline (Threshold) Prompt Tuning

HateXplain 0.703 0.714 (0.415) 0.731
USElectionHate20 0.506 0.762 (0.230) 0.833
HateCheck 0.784 0.790 (0.445) 0.946
SBIC.v2 0.669 0.782 (0.167) 0.854
MHS 0.790 0.790 (0.498) 0.776
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TABLE 16: Accuracy of Task 1. The best results of each dataset are highlighted in bold.

Dataset Baselines Prompt Tuning
Perspective ToxicBERT UnRoBERTa GPT2-M GPT2-L T5-S T5-B T5-L

HateXplain 0.668 0.628 0.625 0.504 0.741 0.734 0.738 0.635
USElectionHate20 0.653 0.644 0.610 0.729 0.746 0.712 0.831 0.712
HateCheck 0.750 0.620 0.616 0.787 0.888 0.847 0.816 0.944
SBIC.v2 0.696 0.635 0.635 0.631 0.845 0.819 0.840 0.831
MHS 0.760 0.736 0.747 0.667 0.736 0.720 0.746 0.763

Avg. 0.705 0.653 0.647 0.664 0.791 0.766 0.794 0.777

TABLE 17: Precision of Task 1.

Dataset Baselines Prompt Tuning
Perspective ToxicBERT UnRoBERTa GPT2-M GPT2-L T5-S T5-B T5-L

HateXplain 0.635 0.610 0.611 1.000 0.760 0.770 0.751 0.634
USElectionHate20 0.875 0.870 0.810 0.765 0.754 0.778 0.820 0.805
HateCheck 0.691 0.592 0.586 0.880 0.862 0.792 0.740 0.915
SBIC.v2 0.734 0.682 0.683 0.580 0.806 0.817 0.822 0.792
MHS 0.703 0.686 0.697 0.628 0.698 0.662 0.695 0.734

Avg. 0.728 0.688 0.677 0.771 0.776 0.764 0.766 0.776

TABLE 18: Recall of Task 1.

Dataset Baselines Prompt Tuning
Perspective ToxicBERT UnRoBERTa GPT2-M GPT2-L T5-S T5-B T5-L

HateXplain 0.787 0.712 0.690 0.008 0.704 0.668 0.711 0.641
USElectionHate20 0.356 0.339 0.288 0.661 0.729 0.593 0.847 0.559
HateCheck 0.905 0.773 0.785 0.665 0.926 0.942 0.975 0.979
SBIC.v2 0.614 0.506 0.505 0.952 0.909 0.823 0.868 0.897
MHS 0.902 0.873 0.872 0.821 0.830 0.898 0.875 0.824

Avg. 0.713 0.641 0.628 0.621 0.820 0.785 0.855 0.780

TABLE 19: Accuracy of Task 1 when the training dataset is different from the transfer dataset.

Training Dataset Transfer Dataset
HateXplain USElectionHate20 HateCheck SBIC MHS

HateXplain - 0.627 0.556 0.579 0.703
USElectionHate20 0.629 - 0.574 0.552 0.708
HateCheck 0.507 0.559 - 0.603 0.552
SBIC.v2 0.553 0.551 0.552 - 0.588
MHS 0.654 0.669 0.603 0.585 -

TABLE 20: Precision of Task 1 when the training dataset is different from the transfer dataset.

Training Dataset Transfer Dataset
HateXplain USElectionHate20 HateCheck SBIC MHS

HateXplain - 0.778 0.634 0.675 0.726
USElectionHate20 0.615 - 0.622 0.571 0.674
HateCheck 0.506 0.733 - 0.646 0.546
SBIC.v2 0.536 0.600 0.534 - 0.563
MHS 0.622 0.794 0.600 0.618 -

TABLE 21: Recall of Task 1 when the training dataset is different from the transfer dataset.

Training Dataset Transfer Dataset
HateXplain USElectionHate20 HateCheck SBIC MHS

HateXplain - 0.356 0.264 0.304 0.654
USElectionHate20 0.689 - 0.380 0.422 0.803
HateCheck 0.586 0.186 - 0.456 0.616
SBIC.v2 0.786 0.305 0.818 - 0.783
MHS 0.785 0.458 0.620 0.446 -
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