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Abstract—Despite continuous efforts to build and update mobile network infrastructure, mobile devices in developing regions continue
to be constrained by limited bandwidth. Unfortunately, this coincides with a period of unprecedented growth in the sizes of mobile
applications. Thus it is becoming prohibitively expensive for users in developing regions to download and update mobile apps critical to
their economic and educational development. Unchecked, these trends can further contribute to a large and growing global digital
divide. Our goal is to better understand the source of this rapid growth in mobile app code size, whether it is reflective of new
functionality, and identify steps that can be taken to make existing mobile apps more friendly to bandwidth constrained mobile
networks. We hypothesize that much of this growth in mobile apps is due to poor resource/code management, and do not reflect
proportional increases in functionality. Our hypothesis is partially validated by mini-programs, apps with extremely small footprints
gaining popularity in Chinese mobile platforms. Here, we use functionally equivalent pairs of mini-programs and Android apps to
identify potential sources of “bloat,” inefficient uses of code or resources that contribute to large package sizes. We analyze a large
sample of popular Android apps and quantify instances of code and resource bloat. We develop techniques for automated code and
resource trimming, and successfully validate them on a large set of Android apps. We hope our results will lead to continued efforts to
streamline mobile apps, making them easier to access and maintain for users in developing regions.

Index Terms—Mobile applications, mini-programs, code bloat, lightweight applications, constrained network
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1 INTRODUCTION

IN the rapid development of 5G technology today, there
still exists a persistent gap of mobile network access

between developing and developed areas. In developing
regions, bandwidth for mobile devices is still a very lim-
ited resource, where most users rely on cellular networks
dominated by older infrastructure (2G or 2G+EDGE) [1],
[2]. The result is overall poor quality of Internet access [3],
with bandwidth of only hundreds of kbps [4], [5]. Despite
efforts ranging from long-distance wireless links [6], [7],
[8], localized cellular networks [2] to affordable commodity
WiFi hotspots [9], growth in mobile bandwidth is still slow.
Actual bandwidth available to users is often constrained by
multiple factors including cost, last mile congestion, and
limited access to backhaul links. Upgrading network infras-
tructure in developing regions still remains a challenge as
the incremental costs of equipments and limited availability
of technical knowledge [10], [11].

Unfortunately for users in developing regions, mobile
applications (a.k.a., apps) worldwide are growing in size at
an unprecedented pace, in part due to the growth of cheap
or unlimited cellular plans. For example, traffic required
to download the top 10 most installed U.S. iPhone apps
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(e.g., Facebook, Uber, YouTube) has grown by an order of
magnitude from 164MB in 2013 to about 1.9GB in 2017 [12].
In the US, these “growing” app sizes mean that software
updates now account for a big chunk of cellular bandwidth
across the country [13], [14]. People in developing regions
begin to rapidly switch from 2G to modern 4G phones for
increased consumption of mobile applications. There are
quite a number of 4G phone users in developing regions
(17.9% in Indonesia and 22.5% in Philippines). However, it
shows that 2G phones are still more shared and more active
on the network due to the lack of network infrastructure
in these regions [15], [16]. Unsurprisingly, studies already
show that larger mobile applications lead to stability or
usability problems on constrained networks [17], [18], [19],
[20].

In concrete terms, this means that users in developing
regions will find it difficult or impossible to access some
of the most popular mobile apps critical to economic and
educational development, despite studies that show tremen-
dous impact from mobile apps on agriculture, health and
education [21], [22], [23]. For example, Duolingo, a popular
app for learning foreign languages, has an install package of
size 20MB, and as of May 2018, provides frequent updates
with bug fixes that require a full download of the app each
week. Khan Academy, the popular online education app,
has an install package of 22MB, and updates its software
roughly once every 2 weeks. Other popular applications
also have surprisingly large install packages. CodeSpark
Academy is at 59MB, Facebook is at 65MB, and Uber takes
61MBs to download. Even simple apps from American Air-
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lines and McDonald’s require 83MB and 43MB to download
respectively. Even more importantly, the majority of mobile
apps are designed for bandwidth rich regions, and develop-
ers issue frequent updates. Recent studies show that 10 out
of the 12 most popular apps issue updates very frequently
(at least one update every two weeks) [24]. Most updates are
similar or the same size as original app installs. For users
in developing regions where a significant portion of their
disposal income goes towards mobile bandwidth costs [25],
this is a severe disincentive towards application usage.

One possible solution is to introduce lightweight ap-
plications. It is worth pointing out that lightweight apps
encourage users to download when they need to use an
app, and delete when not needed, which are usually not
one-time things compared with regular applications. From
the earliest web applications to the current Lite applications,
various Internet companies are also working on developing
lightweight apps and they are not even just for developing
regions. Facebook Lite [26] is a new version of Facebook and
was introduced in 2015, which uses less data and works well
across all network conditions, even in an extremely slow
2G network. Facebook Lite has already hit over 1 billion
downloads and their subsequent Messenger Lite [27] has
been downloaded more than 500 million times. The emerg-
ing downloads indicate the huge demand of lightweight
applications. However, existing lightweight apps require
service providers to design and develop a specific version,
which can not be adopted directly for Android applications
as well as iOS applications on a large-scale.

At first glance, these trends seem to predict a widening
digital divide where developing regions are losing access
to critical parts of the mobile app ecosystem. But is the
situation truly as dire as it seems? Intuitively, it seems
unlikely that this staggering growth in the sizes of mobile
apps is truly driven by growth in functionality. What factors
other than functionality are contributing to this growth?
Perhaps more importantly, how much of this growth is truly
necessary for mobile apps, and how much can be traded
off in return for app sizes more friendly to bandwidth-
constrained networks?

In this paper, we describe our efforts to answer these
questions, through a deeper understanding of factors that
contribute to the accelerating growth in the sizes of mo-
bile applications. We use a variety of empirical tools and
techniques to break down mobile applications1, and find
that for a large number of mobile apps across all categories,
much of the increases in app sizes can be attributed to the
casual inclusion of both resource files and linked software
libraries, much of which is never called by the mobile
app code. These findings suggest it is possible to produce
significantly smaller mobile apps suitable for bandwidth-
limited networks by trimming unreferenced library code
and making bandwidth-aware tradeoffs with resource files.

Our hypothesis is partially validated by the popularity
of mini-programs [29], [30] or mini-apps [31], apps with ex-
tremely small footprints that run on top of mobile platforms
in China. While some of them have reduced functionality
compared with their mobile app counterparts, others retain

1. Given the dominance of Android smart phones in developing
regions [28], we focus exclusively on Android apps in this study.

similar functionality but at a small fraction of the pack-
age footprint to meet the resource constraints imposed by
their parent apps, e.g., WeChat and Alipay2. For example,
WeChat limits its mini-programs to an installation package
of 2MB (up to 8MB if using sub-packages) [30]. Tight limits
on app package size allow these platforms to adopt a load-
on-demand approach to app discovery, where users can
discover and run mini-programs “instantly” with negligible
delay. By comparing mini-programs with their Android app
counterparts detailedly and empirically, we identify the key
source of “code bloat” of Android apps.

Until March 2020, there are 3.9 million available WeChat
mini-programs and 450 million daily active users of WeChat
mini-programs. The success of mini-programs also indicates
the huge demand for such instant and lightweight apps.
However, same as we mentioned above, mini-programs
also require service providers to develop a specific version
and can not be quickly applied to Android apps at large-
scale. Starting with mini-programs, our ultimate goal is
to propose a framework that can quickly convert existing
normal mobile apps to a special type of instant/lightweight
apps, i.e., apps that can be downloaded instantly due to
small package sizes. Developers no longer need to design
a specific lightweight version of the original app, thus the
framework can be applied at large-scale.

In our study, we analyze a large selection of Android
apps to understand the different software components and
their contributions to overall app size. In the process, we
identify multiple types of “code bloat” that can be trimmed
from app packages without impact to functionality, includ-
ing unreferenced third-party code and redundant resource
files. We also develop generalizable techniques for trimming
code bloat from existing mobile apps with the experimental
validation of usability after being trimmed. Our results
show that combined with compacting images and documen-
tation, eliminating code bloat can significantly reduce the
package sizes of many existing apps, making them much
more usable in bandwidth-constrained environments such
as developing regions.

We summarize our key contributions as follows:

• We collect a useful dataset of 200 pairs of mini-
programs and Android apps, and perform code anal-
ysis on the dataset to understand potential sources
of code bloat. To identify potential benefits of mini-
program platforms like WeChat, we also implement
a mini-program from scratch with identical function-
ality as an existing Android app, and analyze them to
understand sources of app size discrepancy. As far as
we know, we are the first to analyze mini-programs
on a large-scale (also the first to analyze lightweight
apps on a large-scale).

• By deeply decompiling WeChat, the dominant mo-
bile application in China, we learn the library mech-
anism of mini-programs. And by comparing the li-
brary design mechanisms of mini-programs and An-
droid library mechanism, we find the key difference
likely arises from the lack of consistency in appli-

2. WeChat is the dominant mobile messaging and social platform in
China (1B+ users), and AliPay is the dominant mobile payment system
in China.



IEEE TRANSACTIONS ON MOBILE COMPUTING 3

cation libraries across Android devices. The finding
inspires us to make further optimization to Android
apps. Meanwhile, our work can guide the following
research on mini-programs, WeChat and lightweight
applications.

• We perform a detailed analysis of 3,200 of the
highest-ranked Android apps on Google Play, and
confirm that linked libraries is a dominant factor
in their overall app sizes. We use static analysis
to identify unreferenced methods and classes, and
carefully consider the preprocessing, decompiling,
trimming, re-packing and validation processes to
remove unreferenced code from these apps. We run a
state exploration tool to estimate resource usage and
find that significant pruning is possible for both code
and resources. By integrating the analysis processes,
we test the framework on the 3,200 Android apps
with the validation of usability after being trimmed.
The results show the effectiveness and correctness of
our trimming process.

We note that Google is already spearheading developer
initiatives for more lightweight mobile phone design in their
“Building for Billions” initiative3. Our effort is complemen-
tary, in that we focus more on the question of bloat for
existing Android Apps, and how they could be retrofitted
to perform better in constrained networks. We introduce the
idea of a streamlined mobile app platform for bandwidth-
constrained networks, and propose an automated process
to reduce code bloat in existing Android apps. It packs
commonly used APIs into a single library, allowing for reuse
and minimizing per-app package size. This platform could
be deployed by mobile phone OS developers like Google or
Android app (platform) developers like Tencent. We hope
this work leads to continued efforts on code trimming for
existing mobile apps, and provides additional support for
lightweight development efforts like Building for Billions.

Finally, while the net impact of our proposed code
trimming mechanisms can vary across different apps, code
trimming is impactful on nearly every app we studied, and
often the largest and most popular mobile apps offer the
most significant opportunities for code trimming. Our goal
is to shed a light on an overlooked approach for reducing
code bloat, with the hope that this and follow-up work
will increase awareness to mobile developers and encourage
them to utilize more efficient code reuse.

2 BACKGROUND AND RELATED WORK

Mini-programs and Lightweight Apps. We begin by
providing some background on the development of mini-
programs by WeChat and Alipay. Mini-programs provide
an extreme example of what is possible if code size were
prioritized over all other concerns.

WeChat and Alipay are the two leading Internet apps in
China, in both users and influence. WeChat is a ubiquitous
messaging platform with a mobile payment component that
has become more accepted in China than cash. Alipay is a
Chinese financial conglomerate that dominates the mobile

3. https://developer.android.com/topic/billions/

payment market. While WeChat might be analogous to a
union of Facebook and Venmo, Alipay might be a combina-
tion of PayPal and Amazon.

WeChat’s goal for its mini-programs is to introduce users
to new apps in real time, often scanning a QR code to
instantaneously install and run a mini-program [29]. Thus
mini-programs have to be extremely small in size. The cur-
rent limit is 2MB for the entire installation package without
using subpackages, including code, libraries and resource
files. In reality, this development effort elevates WeChat to
an app ecosystem capable of competing against Apple’s
AppStore or Google Play, and WeChat encourages its users
to bypass traditional app stores entirely. Since launching in
January 2017, WeChat runs 580,000 mini-programs on 2018,
compared with 500,000 mobile apps published by Apple’s
AppStore between 2008 and 2012 [32].

The popularity of WeChat mini-programs led to a com-
peting effort from AliPay, which launched their own “mini-
app” platform in October 2017 [31]. AliPay’s platform also
sets 2MB as the limit for install package size (up to 4MB if
using sub-packages), with an internal limit of 10MB for stor-
age. Given their similarity, we focus our analysis on WeChat
mini-programs, and use mini-programs in the paper to refer
to WeChat mini-programs.

Mini-programs and mini-apps also share properties with
several other alternative lightweight app platforms. Web
apps [33] are accessible via the mobile device’s web browser
like Safari or Chrome. The apps run on the server and visual
elements are sent to the mobile devices. Another type of
apps, called hybrid apps [34], can be regarded as a special
type between native mobile apps and web apps. Google
announced Android instant apps [35] at Google I/O 2016.
Users can tap to try an instant app without installing it first.
An instant app only loads portions of the app on an on-
demand basis. We note that our goal is to streamline mobile
apps that run on the device, which differs from these plat-
forms, since they both rely on network infrastructure [36].
There is a new type of apps, called Lite apps, which is
first released by Facebook. Lite apps (e.g., Facebook Lite,
Messenger Lite and Line Lite) keep the core functions of
their original version and have smaller size, which are at
the cost of having relatively fewer features and outdated
interfaces compared with original version. However, for
releasing a Lite version app, the service provider needs to
design and develop a specific version, which can not be
wide-scale adopted. There are only two apps in the top free
200 list [37] on Google Play have their Lite versions now,
i.e., Facebook Lite and Messenger Lite.

Program Debloating. Code redundancy is a common
phenomenon in software engineering, which not only leads
to a waste of memory space/network traffic, but also in-
creases the risks of being attacked [38], [39]. Therefore,
program debloating, as a feasible solution, is being valued
by researchers.

Techniques have been proposed for Java and Android
applications debloating. RedDroid [40] removes the unused
methods and classes in Android applications by statically
construct an overapproximate call graph for the analyzed
application. However, the authors failed to consider an-
alyzing the library’s redundancy and the work lacked a
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large-scale verification of apps’ usability. JRed [41] trims
unused code from both Java applications and Java Runtime
Environment by static analysis.

There has been a lot of research aimed at program
debloating in various applications. In response to software
bloated in commodity software, RAZOR [42] performs code
reduction for deployed binaries. With the booming devel-
opment of machine learning, it is also starting to be used
in program debloating. Heo et al. [43] proposed a system
called Chisel to enable programmers to debloat programs
effectively. They used a reinforcement learning-based ap-
proach to accelerate the search for the reduced program.
Modern firmware also contains a mass of unnecessary code
and modules. DECAF [44] was proposed for automatically
trimming a wide class of commercial UEFI firmware. Azad
et al. [45] focused on PHP applications and firstly analyzed
the security benefits of debloating web applications.

Library/API Usage and Dependency. It is often the
case that the client code uses an API in an inefficient
way [46]. Developers are having difficulty balancing be-
tween the predictability of fixed version dependencies and
the agility of flexible ones [47]. Several studies are dedicated
to improving the use of third-party libraries. Kawrykow et
al. [46] developed a tool to automatically detect redundant
code and improve API usage in Java projects. Lammel et
al. [48] designed an approach to deal with large-scale API-
usage analysis of open-source Java projects. This technique
helps with designing and defending mapping rules for API
migration in terms of relevance and applicability. Wang et
al. [49] proposed two qualified metrics for mining API-
usage patterns, i.e., succinctness and coverage. They further
proposed an approach called UP-Miner, for mining succinct
and high-coverage usage patterns of API methods from
source code. Huang et al. [50] implemented a method to
update third-party libraries with drop-in replacements by
their newer versions.

The third-party libraries also increase apps’ attack sur-
face. Backes et al. [51] reported that two long-known se-
curity vulnerabilities in popular libraries were still present
in the top apps. Derr et al. [52] showed that extensive
use of third-party libraries could introduce critical bugs
and security vulnerabilities, which puts users’ privacy and
sensitive data at risk.

3 MINI-PROGRAMS VS. MOBILE APPS

The proliferation of mini-programs in China demonstrates
that for hundreds of thousands of mobile apps, their core
functionality could be implemented in an extremely com-
pact form. The question is, what are the tradeoffs necessary
to obtain that compact implementation? What accounts for
the difference in code size; is it more efficient code, or were
there significant losses in functionality? Answering these
questions will be a vital help for trimming mobile apps. In
this section, we search for an answer by comparing mini-
programs with their Android app counterparts, in both
app content/features and code structure. We describe two
detailed illustrative examples, and then present results of an
empirical analysis of 200 of the most popular mini-programs
and their Android app counterparts.

TABLE 1
Constraints on mini-programs

Restricted Item Description

Page Depth ≤ 5

Package Size ≤ 2MB (8MB if using subpackage)

Local Storage ≤ 10MB per WeChat user

API Usage WeChat offers certain APIs for development

TABLE 2
Common structure of mini-program installation package

File / Folder Name Description Correspondence in Android APK

app-service.js Main program logic codes Android Dex files

app-config.json Common settings file AndroidManifest.xml

page-frame.html The integration of layout
files of all pages

Layout files

Pages folder CSS configuration files of
every page

Layout files

Other folders or files Other resource files Other folders or files

3.1 Overview

Mobile apps face few design constraints other than size
limit. Google Play [53] limits Android apps by 100MB
(Android 2.3+) but allows two expansion files totalling up
to 4GB; iOS allows 4GB for any submission to its App
store [54]. A measurement study in 2017 shows that the
average sizes of iOS and Android apps are 38MB and 15MB,
respectively [12].

Mini-programs must abide by a number of restrictions,
in their page depth (max number of hops necessary to reach
any page), local storage, installation package size, and API
usage, which we summarize in Table 14. WeChat 6.6.0+
allows the usage of subpackages in mini-programs, but still
limits the size of a single package to 2MB and the total
sum of all packages to 8MB [30]. To meet these constraints,
developers often simplify app features and user interface
(UI) elements in mini-program versions of their mobile
app. Furthermore, mini-programs use JavaScript rather than
Java (used by Android apps). We note that while code
size across these two languages can vary (up to 20% [55]),
any syntactical differences are unlikely to be meaningful.
This is because APKs and mini-programs are stored under
compression, and compression algorithms are likely to be
more efficient on more verbose representations.

Using a common unpack tool [56] to parse mini-
programs, we are able to compare the overall code composi-
tion of mini-programs and their Android counterparts (see
Table 2). Implemented using JavaScript, a mini-program’s
main program code resides in app-service.js, which is analo-
gous to the Java Bytecode file in the Android APK (i.e., An-
droid Dex file). There is a common setting file (app-con.json),
analogous to AndroidManifest.xml file in the Android APK.
Each page appeared in the mini-program is registered in the
common setting file, and there is a folder for every page

4. We omit game-related mini-programs in our table, which are
granted 50MB for local storage.
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Fig. 1. NetEase YouDao dictionary application
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(a) Mini-program
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(b) Android app

Fig. 2. Today Weather application

to include its CSS configuration. The main page design code
(HTML) is packaged in page-frame.html, analogous to Layout
files in Android.

3.2 Code Package Composition

Next, we perform detailed comparisons between two mini-
programs and their Android counterparts. One is a popular
Android app whose developers implemented their own
mini-program, and the other is an Android app for which
we implemented a mini-program that precisely replicated
its functionality.

Example 1: YouDao Translation Dictionary. YouDao [57]
is a very popular multi-language (7+ languages) translation
dictionary app, which has an official mini-program version.
As shown in Figure 1, the mini-program includes the app
logo and an input box for translation, while the full app
provides a more sophisticated UI and several extra features
(camera translator, human translator, audio word search,
courses and vocabulary book).

Table 3 lists the per-component code comparison be-
tween the mini-program and the Android app (we discuss
these components in more detail later in §4). We see that
the total footprint for the mini-program is 0.2MB, compared
with 47.2MB for the Android app (219 times smaller). Across
each analogous component, the mini-program version is
smaller by at least a factor of 100! This is an example where
all aspects of the Android app were compacted to generate
its matching mini-program. While the core functionality
remains, some non-core features were cut and the UI was
simplified.

Example 2: Today Weather App. In an app like YouDao
Translation Dictionary, the developer made specific trade-
offs in choosing which areas to trim. We wanted to find
a more controlled example where full functionality was
preserved in the mini-program, so we could better under-
stand the impact of compressing components unrelated to
core features. The only way to ensure a true apple-to-apple
comparison was to implement a mini-program ourselves,
ensuring that the functionality of the Android app was
preserved perfectly.

We found a reasonably sized Android app with simple
program logic and single function, the Today Weather app,
an Android app from the 360 app store5 with no matching
mini-program, which provides city-wise weather conditions
in China. Figure 2 shows the Today Weather app and its mini-
program version we developed.

To build a matching mini-program, we first decompiled
the Android app from its Dalvik bytecode into Java byte-
code using the well-known tool dex2jar [58]. Since the app’s
program code, logic and function calls are all accessible,
we replicated them completely with one minor exception6.
We also made sure that resource files like images were
also identical to their Android counterparts. We tested our
mini-program thoroughly to confirm that it offers the same
interfaces, program logic, resources, and function calls.

Table 4 lists the package analysis of the two programs.
While providing the same features, program logic, resources
and network requests, the mini-program still achieves sig-
nificant reduction in app size: 82.1KB vs. 527KB (com-
pressed) or 1452KB (uncompressed) for the Android app,
mapping to a factor of 6× to 18×.

A closer look shows that while the procedure code file
in the Android app occupies 1.36MB (93.80% of the package
after decompressing the APK), the corresponding code file
in the mini-program is only 8.38KB, which is 160 times
smaller. In fact, the procedure code files of the Android
app is dominated by the Java library files, which takes
up 95.59% of the code space. At least in this example, we
find that we can significantly trim an Android app while
preserving functionality and content (images and features).
The key here is streamlining the procedure code, and more
specifically, its Java library file.

Summary of Findings. These two examples show that
developers can achieve drastic reductions by shrinking all
components of mobile apps, including features and content
(e.g. images). But even while preserving features and con-
tent, we can achieve significant savings by handling libraries
more efficiently. We revisit this in more detail in § 4.

3.3 Pair-wise Package Analysis
Now that we have a high-level sense of potential areas
for trimming mobile apps, we extend our comparison of
Android apps and mini-programs to 200 of the most popular
app pairs. The goal is to get a high level picture of how code,
resources (e.g. images) and functionality compare across

5. http://zhushou.360.cn/
6. Due to security restrictions on mini-programs (HTTPS requests

only), we had to change HTTP requests in the Android app to HTTPS
requests in the mini-program. This minor change should have zero
impact on the outcome of our analysis.
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TABLE 3
Package analysis of mini-program and Android app versions of YouDao Dictionary

Android App Mini-program

Total installation package size APK size 47.2 MB WXAPKG size 0.215 MB
Size after decompressing 60.6 MB Size after parsing 0.232 MB

Res Resources Images 12.25 MB (20.21%) Images 0.161 MB (69.4%)
Layout files 2.47 MB (4.08%) HTML/CSS 0.049 MB (21.5%)

Assets Resources Assets 17.43 MB (28.76%) - -

C++ Library Lib 15.3 MB (25.25%) - -

Procedure Code Android Dex file 10.5 MB (17.33%) app-service.js 0.015 MB (6.5%)

TABLE 4
Package analysis of mini-program and Android app versions of Today Weather

Android App Mini-program

Total installation package size APK size 527 KB WXAPKG size 82.1 KB
Size after decompressing 1452.01 KB Size after parsing 81.84 KB

Res Resource Images 65.63 KB (4.52%) Images 30.17 KB (36.88%)
Layout file 6.80 KB (0.47%) HTML/CSS 42.82 KB (52.32%)

Assets Resource Assets 0 KB (0%) - -

C++ Library Lib 0 KB (0%) - -

Procedure Code Android Dex file 1361.92 KB (93.80%) app-service.js 8.38 KB (10.23%)

Configuration File AndroidManifest.xml 2.42 KB (0.17%) app-config.json 0.47 KB (0.57%)

popular mobile apps, and how much room for trimming
each category represents.

Dataset. We build a list of popular mini-programs from
the monthly list of top-100 mini-programs published by
aldwx.com7. We include all mini-programs ever to appear
on the top-100 list before October 2018. For each mini-
program, we identify its corresponding Android app coun-
terpart using a combination of application name, developer,
official identification, and manual confirmation. Our final
dataset includes the 200 popular mini-programs and their
official Android app counterparts.

For each mini-program and Android app pair, we ana-
lyze several key metrics to better understand how the two
differ in content, functionality and software package size.
• Installation package size: the size of installation package
for mini-program (WXAPKG size) and the Android app
(APK size).

• Image size and number of images: total size of all image
files and total number of image files in the respective
packages. Applications with richer features tend to have
more images.

• Page count: a measure of number of features provided by
the application. Since mini-programs register individual
pages in their common settings file, i.e., app-config.json,
we use this to count the pages for each mini-program
as a measure of features in the program. Android apps
register each activity in their AndroidManifest.xml file, and
we use the number of activities as the measure of features
for Android apps. In our experience, mini-program pages
correlate roughly with Android activities.

7. https://www.aldwx.com/ is a third-party statistics platform for
WeChat mini-programs.

• Composition of installation package: the proportion
of individual components that make up the installation
package, including images, procedure code and support
files.
We use the reverse engineering tool Apktool [59] to

decompile each target Android app and convert the Dalvik
bytecode to Smali8 code for our analysis.

Key Observations. We plot key results from these metrics
in Figure 3. All graphs are sorted by descending order of the
size of the Android app, ranked 1 (largest) to 200 (smallest).
Thus all graphs are consistent on the x-axis. From these
results, we make three main observations.
• Mini-programs and their equivalent Android counter-
parts differ significantly in the size of installation package.
Mini-programs are 5-50 times smaller than their Android
counterparts. Surprisingly, there seems to be little or no
correlation between package sizes (Figure 3(a)); several
large Android apps (tens of MBs in size) translated to
some of the smallest mini-programs (<100KB).

• Not surprisingly, Android apps contain much more im-
ages and larger images than their mini-program coun-
terparts (Figure 3(b)). Bigger, more feature-rich Android
apps lost more features in the translation to their mini-
program counterparts.

• For most Android apps, program code (procedure code
and C++ library) dominates the installation package,
often taking 60-70% of the total footprint. Images only
occupy 10-20%. Not surprisingly, images often dominate
the much smaller installation packages of mini-programs.
Considered as a whole, our analysis of popular pairs of

mini-program / Android apps shows that current Android
apps have used a variety of techniques to generate compact

8. Smali/Baksmali is an assembler/disassembler for the dex format
used by Android’s Java VM implementation.
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Fig. 3. Detailed comparison between 200 pairs of mini program and its Android app counterparts. The pairs are ranked by the descending size of
the Android APK package.

mini-program counterparts, and apps vary widely in how
much potential code/resources are available for trimming.

4 LIBRARIES AND BLOAT IN MOBILE APPS

Our results in the previous section identified Java Libraries
as a potential culprit for the rapid growth of install packages
in Android apps. Here, we take a closer look at how resource
files, libraries and code make up the components of an
Android app, by examining the code structure of a large
range of popular Android apps.

Android App Dataset. We build a large set of popular
Android apps and use it for our code analysis and code-
trimming experiments. We start with a ranking of top free
Android apps from the popular app analytics platform
App Annie9. We choose 32 Android app categories10 from
Google Play, and download the top ranked 100 apps in each
category, forming a total dataset of 3,200 apps. Popular apps
in our dataset include Duolingo, Khan Academy, Walmart,
Uber and McDonald’s. It should be pointed out that the
32 categories we choose do not include game-related apps
due to two reasons. First, as mentioned above, game-related
mini-programs and regular mini-programs have different
development restrictions. It will lead to an unfair compar-
ison of Android apps and mini-programs, because there

9. https://www.appannie.com/
10. The 32 Android app categories in our study: 1: Books & Reference,

2: Business, 3: Comics, 4: Communication, 5: Education, 6: Entertain-
ment, 7: Finance, 8: Health & Fitness, 9 :Libraries & Demo, 10: Lifestyle,
11: Video Players & Editors, 12: Medical, 13: Music & Audio, 14: News
& Magazines, 15: Personalization, 16: Photography, 17: Productivity, 18:
Shopping, 19: Social, 20: Sports, 21: Tools, 22: Maps & Navigation, 23:
Travel & Local, 24: Weather, 25: Art & Design, 26: House & Home, 27:
Auto & Vehicles, 28: Beauty, 29: Dating, 30: Events, 31: Food & Drink,
32: Parenting.
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Fig. 4. Contribution of C++ Libraries, Procedure code, Resources and
Assets to Android App size.

are same package size restrictions of Android game-related
apps and Android regular apps. Second, the installation
package format of most Android game-related apps is
XAPK, which are different from normal apps (APK). An
XAPK file consists of at least one APK file and an OBB file
(extra data file for the app). Therefore, we exclude game-
related Android apps in our experiments. Average app size
is 22.70 MB of our dataset. We also exclude apps for smart
watches (Android Wear apps) and smart bracelets (Android
Bluetooth Low Energy apps) because of the different devel-
opment processes of these apps and regular apps for smart
phones. We also give a detailed explanation about mobile
apps of smart watches and smart bracelets in § 6.3.

4.1 Components of Android Apps
As we did earlier in Tables 3 and 4, we divide the compo-
nents of an Android app into four key categories: Resource
files, Assets, C++ Library files, and Procedure code files (includ-
ing Java Libraries). Resource files (files in the res directory)
and Assets (files in the assets directory) both include images
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and supplementary content, but differ in how they are used
by the app. Assets tend to cover documentation, icons, and
other multimedia files, while resource files are accessed by
the app in memory via resource IDs. C++ Library files are
external libraries accessed via Java Native Interface (JNI),
and procedure code files represent both core Java code and
Java Libraries.

Figure 4 shows how these four components contribute
to the app size, across the 3,200 Android apps in our
dataset. The exact contribution per component varies across
Apps, but the procedure code file is generally the biggest
contributor. Fortunately, C++ Library files (which are likely
to be the hardest to modify or trim) are reasonably small
contributors to code size on most apps. Instead, it seems
there is an ample opportunity to optimize procedure code
files, along with resources in /res and resources in /assets.

4.2 Impact of Java Libraries

We observed earlier that Java libraries can add substantially
to the code size of an Android app. Here, we study how
Java library code (a sub-component of procedure code)
contributes to overall package size in Android apps. Java
libraries can be further classified as official or third-party
libraries. Many Android apps use third-party libraries, e.g.,
advertising service libraries to generate revenue [60]. The of-
ficial libraries are offered by Google, and can be identified by
their names, e.g., Android.support.v4. We detect third-party
libraries using an existing framework called LibRadar [61]
with the additional implementation of multi-dex11 cases by
ourselves.

11. The Android Dalvik Executable specification limits the total num-
ber of methods that can be referenced within a single DEX file to 65,536.
When the total number of methods exceed 65,536, there will be multiple
DEX files of the application.

Figure 5 quantifies the code sizes of Java libraries from
different perspectives. Figure 5(a) plots, for each of our 3,200
apps sorted by procedure code size, the absolute size of
total procedure code (blue dot) and the absolute size of Java
Libraries (red dot). For both, the code sizes are the sizes of
the Smali files obtained after decompilation. Our key obser-
vation here is that for the overwhelming majority (96.7%)
of apps, procedure code is dominated by Java libraries. This
is further confirmed in Figure 5(b), which plots the CDF of
the ratio between Java library code size and total procedure
code size. For more than 55% of apps, Java library code
accounts for more than 70% of total code size. Non-Java
library code makes up the majority of procedural code in
only 17% of apps. Figure 5(c) shows that this dominance by
Java libraries is consistent across app categories.

4.3 Library Management in Android vs. Mini-Programs
While procedure code in Android apps is dominated by
Java libraries, code in mini-programs are not dominated
by their libraries. This can be directly attributed to how
libraries are managed by WeChat mini-programs and their
Android counterparts. Figure 6 illustrates the two library
management mechanisms, which we describe next.

Android apps. Each Android APK includes both library
code and app-specific code (codes written by app devel-
opers). For example, Android.support.v4 is a library package
and com.example is a custom code package. When generating
an APK, all library codes and custom codes are packed into
the same APK.

WeChat mini-programs. After applying decompilation
to WeChat, we find the library file used by WeChat mini-
programs is the libappbrandcommon.so file in the lib dictio-
nary of the WeChat app. When generating a mini-program,
only custom codes are packed into the mini-program, and
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1 public class MainActivity extends AppCompatActivity {
2 protected void onCreate(Bundle savedInstanceState) {
3 super.onCreate(savedInstanceState);
4 setContentView(R.layout.activity main);
5 int a = 1, b = 2, c = 3, d; d = sum(a, b); }
6 int sum(int num1, int num2){ return num1 + num2; }
7 int sub(int num1, int num2){ return num1 − num2; }
8 }

Listing 1. The original MainActivity

not library files. In other words, a mini-program does not
include library files in its installation package, but uses the
library file included in the WeChat app.

This key difference likely arises from the lack of con-
sistency in application libraries across Android devices.
Apps packing their own library code improve robustness
and increase the likelihood of the app running on dif-
ferent devices and Android versions. The price for this
robustness is redundant library code packed into the APK
files of each Android app. In contrast, the consistency of-
fered by WeChat’s own mini-program platform means mini-
programs can make stronger assumptions about library
versioning, and a single common library can be shared
across all mini-programs. This dramatically reduces the
duplication of library code across apps or mini-programs.

5 TRIMMING CODE AND RESOURCES ON AN-
DROID APPS

Our early analysis of the Today Weather mini-program
in Section 3 showed that some apps included large (and
likely unused) Java libraries in their install package. The
size of these Java libraries could account for significant
code size discrepancy between Android apps and mini-
programs. Our additional hypothesis is that most Android
apps only use a small subset of modules in Java libraries, but
developers often import the entire library because manually
identifying the code snippets for the target modules is labor-
intensive. As a result, significant portions of the package
code is actually unused by the app, i.e. “code bloat,” and
should be trimmed.

In this section, we propose a systematic framework to
trim Android apps, including identifying code bloat, remov-
ing it, and then repacking the app. Meanwhile, we also test
the usability of apps after being trimmed. We can perform
similar operations to identify resource bloat (e.g., unused
images) and remove them from the app. Here, we describe
our proposed process for trimming program code (§5.1) and
resources (§5.2), and a process that integrates both. Later
in §6, we evaluate the effectiveness of our proposed app
trimming techniques and usability of the trimmed apps.

5.1 Trimming Code Bloat
Our trimming framework consists of four sequential steps:
preprocessing, code decompilation, code bloat detection,
and app repacking and validation. It takes an Android
installation package as input, and outputs a repacked app
with detected code bloat removed. More specifically, we
first preprocess the input app, then unpack it using the
dex2jar tool where Dalvik bytecode gets transformed to Java

1 public class MainActivity extends AppCompatActivity {
2 public MainActivity() {}
3 protected void onCreate(Bundle var1) {
4 super.onCreate(var1);
5 this .setContentView(2131296283);
6 int var2 = this .sum(1, 2); }
7 int sum(int var1, int var2){ return var1 + var2;}
8 int sub(int num1, int num2){ return num1 − num2; }
9 }

Listing 2. MainActivity bytecode after decompilation

1 public class MainActivity extends AppCompatActivity {
2 public MainActivity() {}
3 protected void onCreate(Bundle var1) {
4 super.onCreate(var1);
5 this .setContentView(2131296283);
6 int var2 = this .sum(1, 2); }
7 int sum(int var1, int var2) {return var1 + var2;}
8 }

Listing 3. MainActivity bytecode after code trim

bytecode. We then leverage ProGuard [62], a Java class file
shrinker, optimizer and obfuscating tool to identify and trim
code bloat. Finally, we repack the app and validate that
its functionality has not been disrupted by the trimming
process. We now describe these steps in detail.

Preprocessing. The goal of preprocessing is to identify
Android apps that cannot be decompiled and repacked due
to built-in security mechanisms (e.g. encryption or code
signatures) that prevent code modification or decompila-
tion [60] (more discussion in §7). The preprocessing step
tests Android apps by first re-signing the app (as a different
developer from the original) and check if it can still run
properly, and if successful, then decompiles the app using
bytecode transformation, repacks the app, and then re-
signs the app. If the re-signed app passes both tests, it is
suitable for code trimming. Note that this limitation only
applies because we are an untrusted third party. Google
or an authorized third party could use authenticated tools
to bypass an app’s protection mechanisms and enable code
trimming.

Identifying and Removing Code Bloat. To identify code
bloat, we first apply the dex2jar tool to convert the app’s
Dalvik bytecode to Java bytecode. Here the conversion
supports both apps with single-dex and multi-dex. For apps
with multi-dex, we merge the Java bytecodes per DEX file
by their file paths and use a map file to record the file path
that will later be used by the re-pack step.

Next we use the ProGuard to explore the app execution
space, recursively searching for any class and class members
that the app will actually use. Those not found in recursively
search are treated as code bloat and removed from the app
package. The search of the app execution space requires a
seed or entry point. For this we use MainActivity, the actual
entry point of the target Android app, accessible directly
from the global configuration file (AndroidManifest.xml). To
be conservative, we also do not trim any subclass of the
Application, Activity, Service, BroadcastReceiver and Content-
Provider classes, and instead use them as extra entry points.
Furthermore, because ProGuard only targets Java, we do not
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trim the Enum class, Java Native Interface and construction
methods as well as widgets used by the XML files. Finally,
our current search implementation does not consider Java
reflection and dynamically loaded code instantiated by the
Java class loader, because ProGuard does not recognize
them [63]. This means we could accidentally trim useful
code, but we can identify any such mistakes and recover
during the app validation step.

An Illustrative Example. Here is an example of how to
identify and remove code bloat from an app. Listing 1
shows the Java code of the MainActivity class in a sample
Android app, where “onCreate” sets the layout file of the
main page. Since onCreate is the entrance to the program, the
sub function will not be used after the program is executed,
and should be trimmed. Listing 2 shows the MainActivity
Java bytecode after decompilation, where variable names
are replaced by their values, and any unused variables (i.e.,
c) are removed. Listing 3 shows the result after code trim,
where the unused function sub is removed.

Re-packing and App Validation. After re-packing the
trimmed app, we need to validate if it still functions cor-
rectly. For this we follow previous works [60], [64] for app
validation. In [60], the authors ran a Monkey [65] script
on the tested apps to validate the effectiveness after they
anonymized sensitive information in Android apps. Mon-
key tool is a means of automated testing for the Android
platform provided by Google. In their work, Monkey per-
formed a random exploration on the App UI for 2 minutes
per app. In [64], their work included the process of binary
rewriting and re-packaging apps, and they used PUMA [66]
Android UI-automation framework to run each re-packed
app for 3 minutes or until all UI states were explored.
PUMA is a programmable UI automation framework for
conducting dynamic analyses of mobile apps at scale, which
incorporates a generic Monkey and exposes an event driven
programming abstraction.

Therefore, We run an automatic UI traversal script for
3 minutes based on the Appium [67] and Monkey scripts.
Appium is an open source test automation framework for
mobile apps. The script performs UI traversal as well as ran-
dom exploration. This script will validate the functionality
of the trimmed apps.

It is worth noting that another option for app validation
is the proposed PUMA framework [66], which is also used
by [64] for validation. Unfortunately, PUMA only supports
up to Android 4.3, and a significant portion of apps (roughly
one third of apps tested) fail to be installed on the An-
droid 4.3 emulator due to SDK (Software Development Kit)
limitations, which makes PUMA unsuitable for our final
app validation process. 538 apps in our dataset passed the
preprocessing test and can run on Android 4.3, therefore
we also apply PUMA to these 538 apps for dual validation.
Finally, there are 486 out of 538 apps (90.33%) function
properly after being trimmed, which is consistent with the
results of our main validation experiment in §6.

5.2 Trimming Resource Bloat
We also seek to detect and remove unnecessary bloat in
resource files, i.e., both Res resources and Assets. For this
we use static code analysis to identify unused resources in

the app, from images to XML files. Specifically, we first use
Apktool to decompile the target Android app for static code
analysis, which converts the Dalvik bytecode to Smali code
and parses the resource file. Parsing the resource files allows
us to identify unused resource files.

Identifying Bloat in Res Resources. The res directory
contains different file types like drawable, string, color, etc.
We only identify bloat in drawable resources like images
and XML files, because trimming other resource types re-
quires modifying the XML file, and can potentially disrupt
the decompilation and re-packing process.

First, parsing resource files will produce a public.xml file
in the folder res/values, which records every Res resource’s
ID, name and type (drawable, string, attr, color, array, etc).
As we mentioned in §4, after they are compiled, any Res
resource is accessed through its resource ID. To identify all
resources used by the app, we can just search for them in
each Smali file12.

Identifying Bloat in Assets. Assets usually store static
resources like database files and videos, which are neither
code nor configuration files. Thus resources in assets are not
compiled when packed into an APK. Since asset resources
are accessible by their absolute path in the code, we can
identify them by traversal searching the absolute path of
each asset resource in each Smali file. Resources not identi-
fied by this search are trimmed.

5.3 Putting Everything Together
Finally, we can integrate the code trimming process with
the resource trimming process to build a fully automated
app trimming framework for Android apps. The overall
framework is shown in Figure 7. It trims the assets, the res
resources, and finally the procedure code in sequence.

Obfuscated Code. It is worth noting that the code of
many commercial applications would be obfuscated when
the apps are released. Code obfuscation is a commonly
used method to prevent applications from being reverse-
engineered, which usually makes the decompiled code
unreadable. For the cases where the code is obfuscated,
we explain as follows that how our framework identifies
specific resources, functions and variables.

• Resources. Taking List 2 as the example, it shows
the MainActivity bytecode after decompilation. Af-
ter being decompiled, the resources will be repre-
sented by different IDs, e.g., R.layout.activity main
in Listing 1 → 213129683 in Listing 2, where
R.layout.activity main is a layout file to set the Main
Activiy interface. Actually, resources are represented
by unique IDs during compilation. Thus, after de-
compiling the app, we can still find a resource by
a unique ID, even though the resource name is not
readable. Resources usually include layout files, im-
ages and XML files. Therefore, our resource trimming
process can still locate resources by IDs even when
code is obfuscated.

• Functions and variables. For the name of variables
and functions, obfuscated code is often decompiled

12. Here we need to exclude any Res resources found in the R class
Smali files, since those files include all Res resources.
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Fig. 7. The overall process of our proposed app trimming framework.

with some unreadable letters, e.g., a, b and c. Mean-
while, there will be lots of variables and functions
with the same names in all the byte code. For ex-
ample, there is a sum function in file file name1,
and a multiple function in file file name2. file name1
is in the path /dir1/ and file name2 is in the path
/dir2/. After the app being obfuscated, we present
one possible scenario as follows: sum→a, multiple→a,
file name1→a, file name2→a, dir1→a, dir2→b. There-
fore, we could use /a/a to locate the file file name1,
use /b/a to locate the file file name2, use /a/a:a to locate
the function sum, and use /b/a:a to locate the function
multiple. Please note that the same file name will not
appear in the same path and the same function or
variable will not appear in the same file when code
is obfuscated. Therefore, our code trimming process
can still locate functions, variables and files by paths
plus file names plus variable/function names.

Thus, even if the code is obfuscated and unreadable, we
can still recursively search for any class and class member
which apps actually use.

6 EVALUATION

In this section, we evaluate the performance of our proposed
app trimming framework. We consider two key metrics:
effectiveness as measured by reduction in mobile app size,
and correctness in terms of whether the trimmed app still
functions properly.

Experimental Configuration. Our evaluation considers
the 3,200 top Android apps described in §4. To experiment
with this wide range of apps [68], we install these 3,200 apps
on an Android emulator (Samsung Galaxy S7, Android 8.0),
and ran the emulator on two identical Ubuntu 16.04 ma-
chines with 6-core 3.60GHz CPU and 100GB memory. 76 out
of the 3,200 apps fail to be installed on the emulator, while
204 apps fail to run properly after installation. We removed
them from our experiments. In the end, our experiments
used the remaining 2,920 apps to test the effectiveness and
correctness of our trimming framework.

6.1 Effectiveness of App Trimming
Figure 8 plots the CDF of the absolute app size reduction,
the normalized app size reduction and the per component
reduction normalized by the app size. From Figure 8(a-b),
we see that for 40% of the apps, trimming the app can reduce
the app size by at least 10MB, or at least 52%. Here are
some specific examples: Duolingo reduces from 19.87MB to
12.07MB, Khan Academy reduces from 21.94MB to 16.48MB,
Uber reduces from 60.64MB to 31MB, and McDonald’s re-
duces from 42.5MB to 15MB. Figure 8c further shows that
trimming res resources (images) is highly effective, followed
by trimming procedure code (Java library files).

These results confirm that our design can effectively and
significantly reduce the sizes of Android apps by trimming
code and resource bloat. Our trimming process is fully auto-
mated, allowing third-parties to easily generate lightweight
mobile apps for developing regions without sacrificing basic
functionality. For app developers, our framework helps to
identify potential code and resource bloat for performance
optimization.

6.2 Correctness of App Trimming

Large-scale Evaluation. After re-packing the trimmed
app, it is necessary to validate if it still functions correctly.
We give a detailed introduction to the validation process
in Section 5.1. Because of the vast number of applications
that need to be tested, we use the above-mentioned UI-
automation tools Monkey and PUMA for validation.

Among the 3,200 Android apps we tested, 2,920
apps passed our preprocessing steps and were deemed
suitable for automated trimming. Of these, 2,617 apps
(89.62%) passed validation and operated properly after be-
ing trimmed, which indicates the robustness of our frame-
work. Meanwhile, as mentioned above, there are 538 apps
in our dataset that can run on Android 4.3 and passed
the preprocessing test, which can be validated by PUMA.
Among the 538 apps, 486 apps (90.33%) function properly
after being trimmed and re-packed. The dual authentication
of PUMA experiments further confirms the robustness of
our framework.
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Fig. 8. Our automated, app trimming framework can effectively reduce app size.

We observe that most apps have significant drops in
their Java code sizes, with reductions ranging from 60-
80% of their original size. More than 70% of apps saw a
drop in redundant code of more than 5MB, and a small
number of apps saw a size reduction of more than 20MB
after being automatically trimmed. The average size of the
2,617 original apps is 22.49MB, and after being trimmed, the
average size drops down to 10.73MB, which is about half
of the original size. In other words, considering the average
value, users are able to install twice as many applications
on the mobile devices compared with the original situation.
Similarly, the cost of network traffic is half of the original
amount.

User study. In addition to adopting above mentioned
PUMA, the widely used Android UI-automation frame-
work, and Monkey, the Android standard UI automator for
large-scale correctness validation, we further conducted a
user study to demonstrate the correctness of our trimming
process.

Referring to the user study performed in [69], we ran-
domly selected 4 apps (Tips Imo beta call video chat,
iFunny, ABC7 News, and Max Hurricane Tracker) from 4
different categories, i.e., education, entertainment, news &
magazines, and weather. The apps were selected from the
2,617 apps which passed validation process in our large-
scale evaluation. We recruited 11 people, including grad-
uate students in Computer Science from a university and
software engineers from a leading IT company in China,
to participate in the user study. Each participant received a
$10 bonus for the participant fee. We installed the 4 apps
on an Android emulator (Samsung Galaxy S7, Android 8.0).
Each participant was told to complete two tasks with each
given app: (1) manually explore as many functionalities
of the original app as possible in 5 minutes (longer than
71.56 seconds, the typical average app session [70], and 3
minutes, the automated test time), (2) manually explore as
many functionalities of the trimmed app as possible in 5
minutes. After the tasks, participants were asked to rate
their satisfactoriness of the trimmed apps.

Figure 9 shows the absolute size of each component’s
redundant content, i.e., procedure code, assets and res re-
sources. The original sizes of apps vary from 2.90M to
22.32M, and the blue bars represent the absolute app sizes
after being trimmed. The results show that there are differ-
ent redundant components for different applications, e.g., a
lot of resource redundancy in the app #1, and similar size
of resource and code redundancy in the app #3. In addition,

1 2 3 40

5

10

15

20

25

(M
By

te
)

Size after trimming
Redundant code
Redundant assets
Redundant res

Fig. 9. Redundancy distribution of the four tested apps (1: Tips Imo beta
call video chat, 2: iFunny, 3: ABC7 News, 4: Max Hurricane Tracker).

we tested the cases of single-dex (one app) and multi-dex
(three apps, 2, 2, and 3 DEX files, respectively) at the same
time. The multi-dex cases were able to help us validate the
correctness of our DEX file merging and mapping processes.
In our user study, compared with the original apps, the
trimmed apps behaved in the same way it was designed.
It is also worth mentioning that network errors and blank
pages did occur in some tests, and we verified that it also
occurred when testing the original apps. According to the
participants’ feedbacks, the average satisfactoriness of the
trimmed apps is 4.27 (the satisfactoriness is from 1 - 5). We
analyzed other feedbacks from participants, and they felt
that there is no significant difference in performance, such
as startup speed, and page switch. This may be due to that
we tested the regular applications. As mentioned above,
because of the different development mechanisms com-
pared with normal apps, we excluded game-related apps
in both mini-programs and Android applications, which
have larger sizes, are more complex, and have higher power
consumption.

6.3 Validation of Mobile Sensors

Most mobile phone devices do not have external sensors,
i.e., sensors outside the phone. Smart watches and smart
bracelets which have come into fashion in recent years usu-
ally include special sensors like ECG monitors and tempera-
ture sensors, which are usually not built into mobile phones.
However, apps related to smart watches and smart bracelets
have different development processes and APIs compared
with Android apps for phones, which called Android Wear
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apps13 and Android BLE (bluetooth low energy) apps14.
Therefore, external sensors and wearable devices are not
considered in our work now.

Meanwhile, we want to verify whether apps can still call
internal sensors of mobile phones correctly after using our
framework. We choose three highly ranked sensor test apps
in Google Play, i.e., Sensors Toolbox [71], Sensors Multi-
tool [72] and Sensor Box for Android [73], which have all
been downloaded more than 5 million times. Few Android
devices have every type of sensors (especially barometers
or thermometers) [74]. Thus we choose the sensors that
most mobile phones have for testing. All three apps have
the functions of testing Accelerometer Sensor, Light Sensor,
Pressure Sensor and Proximity Sensor, and Sensors Toolbox
can test GPS location. Therefore, we test Accelerometer
Sensor, Light Sensor, Pressure Sensor, Proximity Sensor and
GPS after using our framework. We also install apps on a
Samsung Galaxy S7 emulator with Android 8.0. All three
applications can be successfully installed and passed our
preprocessing step. After our trimming and re-packing pro-
cesses, all the sensors tested are working correctly, which
verifies that our framework is effective for internal sensor-
related applications.

7 DISCUSSION

Reducing redundancy during app development. Results
of our study show that significant code and resource redun-
dancy are widely present in today’s mobile apps. Removing
or limiting them during app development is quite feasible
using existing tools.

To reduce code redundancy, one potential tool is Pro-
Guard [62], which has already been integrated into Android
Studio [75], the official development environment for An-
droid. Developers can easily edit ProGuard configurations
to remove redundant code in their projects. However, our
results show that code redundancy is still extensively ex-
isted in Android apps. Developers prefer to use ProGuard
to intentionally obfuscate their code for preventing attacks
rather than use ProGuard to remove redundant code. More-
over, even for obfuscation, developers report difficulties
applying ProGuard for their own apps [76]. It is needed
to be pointed out that ProGuard can only be used at the
processes of development, and it is hard for users to trim
the released applications. One other possible reason is that
developers updating their apps over time might opt to save
code belonging to deprecated features rather than removing
them fully, since code removal might introduce troubles for
the future revision, which require more effort to locate and
fix.

Tools also exist for removing resource redundancy dur-
ing app development. Android Lint is a code scanning tool
provided by Android SDK and has been integrated into
Android Studio. It helps developers identify and correct
issues like unused resources during development. Similar
to ProGuard, Android Lint can also only be used in the
processes of application development. Our observations of

13. https://wearos.google.com/
14. https://developer.android.com/guide/topics/connectivity/

bluetooth-le

high levels of resource redundancy likely indicates that few
developers are using Lint. In roughly half of Android apps,
more than 50% of asset resources are redundant, and it is
even worse for Res resources: in roughly half of Android
apps, more than 80% of Res resources are redundant. Since
removing unused resources is less likely to produce complex
failure modes, developers looking to trim bloat should start
with resources.

The above discussion shows that there is a gap between
developers and users, especially users with limited network
resources, who anticipate mobile apps with less redundancy.
However, although there are already existing tools for re-
moving or limiting redundancy of apps during develop-
ment, developers tend to keep the redundancy with the
consideration of avoiding potential troubles and reducing
workload. Meanwhile, the existing tools such as ProGuard
and Lint, can only be used directly at the processes of
development. There is no way for normal users to trim the
applications because of the difficulty of decompilation and
the fragileness of modifying released apps. Our framework
can effectively and automatically trim existing released An-
droid apps by trimming both redundant code and resources.

Devices used in developing countries. Related re-
search [1] shows that while mobile data has become more
affordable across all regions, device affordability remains a
significant barrier to mobile Internet access in developing
regions, particularly for the poorest 20% of the population.
Taking Sub-Saharan Africa as an example, according to
consumers, a lack of digital skills and literacy followed by
affordability are the two largest barriers to mobile Internet
adoption [77].

Although in the developing regions, affordability is still
a huge problem. However, we find that even for users from
developing countries, there are quite a number of 4G phone
users (17.9% in Indonesia and 22.5% in the Philippines) [15].
Still, for people who can afford 4G phones, the support of
local networks is necessary.

In developing regions, service providers usually offer
low-cost devices to meet the market demand. Low-cost
smart phones used in developing regions will also have
a high-resolution touch screen display, Wi-Fi connectivity,
web browsing capabilities, and the ability to accept so-
phisticated applications. For example, Tecno Mobile has
established a franchise retail network to providing low cost
smart phones since 2010, and has been successful in Ghana,
Cameroon, Nigeria, and other countries in Africa [78]. In
2016 Orange and Google jointly launched an affordable
digital communication package 3G Orange Rise 31 Special
Edition, offering a high-quality smart phone at low-price for
14 African markets and Jordan with Android 6.0 [78]. Most
Android apps can run on such low-cost devices but app
installations are limited by the memory sizes of devices, e.g.,
above mentioned 8GB memory.

To get a clearer picture of the mobile devices that are
primarily used by users in the developing regions, we
choose three mainstream e-commerce sites in Africa, Kil-
imall15 from Kenya, Jumia16 from Nigeria and Takealot17

15. https://www.kilimall.co.ke/
16. https://www.jumia.com.ng/
17. https://www.takealot.com/
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TABLE 5
Top 10 mobile phones sold on three mainstream e-commerce sites in Africa (surveyed in July 2020)

Sites Name No. Phone Name Brand Memory System Network Support RAM

1 Infinix ZERO 3 X552 Infinix 16GB Android 2G/3G/4G 3GB
2 Refurbished iPhone 4S Apple 8/16GB iOS 2G/3G/4G LTE 1GB
3 Refurbished iPhone 4 Apple 8/16/32GB iOS 2G/3G/4G LTE 512MB
4 Refurbished iPhone 5 Apple 16GB iOS 2G/3G/4G LTE 1GB

Kilimall 5 Tecno F1 Tecno 8GB Android 2G/3G 1GB
(Kenya) 6 Refurbished Samsung Galaxy S7 edge Samsung 32/64GB Android 2G/3G/4G LTE 4GB

7 Refurbished iPhone 5S Apple 16GB iOS 2G/3G/4G LTE 1GB
8 Samsung Galaxy A10s Samsung 32GB Android 2G/3G/4G LTE 2GB
9 Refurbished iPhone 6 Apple 64GB iOS 2G/3G/4G LTE 1GB
10 Global Google Version Refurbished Huawei P8 Huawei 16GB Android 4G LTE 2GB

1 Gionee S11 Lite Gionee 64GB Android 2G/3G/4G LTE 4GB
2 Samsung Galaxy S20 Ultra Samsung 128GB Android 4G LTE 12GB
3 Umidigi A7 Pro Umidigi 64GB Android 3G/4G LTE 4GB
4 Umidigi A3S Umidigi 16GB Android 2G/3G/4G LTE 2GB

Jumia 5 iPhone 11 Pro Max Apple 64GB iOS 4G LTE 4GB
(Nigeria) 6 iPhone X Apple 64GB iOS 4G LTE 3GB

7 Samsung Galaxy A20s Samsung 32GB Android 2G/3G/4G LTE 3GB
8 Samsung Galaxy A71- Samsung 128GB Android 4G LTE 8GB
9 Samsung Galaxy A31 Samsung 128GB Android 4G LTE 4GB
10 Samsung Galaxy A10s Samsung 32GB Android 4G LTE 2GB

1 Hisense U962 2019 Hisense 8GB Android 3G 1GB
2 Samsung Galaxy A30s Samsung 128GB Android 4G LTE 4GB
3 Xiaomi Redmi Note 8 Xiaomi 64GB Android 2G/3G/4G LTE 4GB
4 Huawei Y5 Lite Huawei 16GB Android 2G/3G/4G LTE 1GB

Takealot 5 Samsung Galaxy A2 Core Samsung 8GB Android 2G/3G/4G LTE 1GB
(South Africa) 6 Samsung Galaxy A10s Samsung 32GB Android 2G/3G/4G LTE 2GB

7 Nokia 105 (2019) Feature Phone Nokia 4MB Symbian 2G 4MB
8 Xiaomi Redmi 8A Xiaomi 32GB Android 2G/3G/4G 2GB
9 Samsung Galaxy A51 Samsung 128GB Android 2G/3G/4G LTE 4GB
10 Samsung Galaxy A50 Samsung 128GB Android 2G/3G/4G LTE 4GB

from South Africa for study. We counted the top 10 mobile
phones sold on the three websites, and the results are shown
in Table 5. First, we find refurbished older iPhones are very
popular on Kilimall (5 out of 10, from iPhone 4 to iPhone 6).
Refurbished devices have a lower price than new devices
and there is no significant difference in use, which is in line
with the lack of affordability in developing regions. Second,
besides refurbished iPhones, most popular devices use An-
droid system. The price advantage of Android phones leads
to the popularity in developing regions. Meanwhile, our
work is for the Android system and it is very suitable for
developing regions. Third, there is only one feature phone
(non-smart phone) Nokia 105 (2019) in the top lists, which
demonstrates that most popular devices used in developing
regions are smart phone and they are able to run mobile
applications. Besides Nokia 105 (2019), the smallest memory
of other most popular devices in developing regions is 8GB
and the smallest RAM is 512MB, which is not a very low-end
configuration, and we have tested that apps are trimmed
by our framework can operate properly on the emulator
with above configuration. Fourth, the memory sizes of most
popular devices are less than 64GB (24 out of 30), which
indicates that the memory of popular mobile phones used
in developing regions is still limited by low affordability.
Besides, we use Samsung Galaxy S7 as the emulator in our
experiments and Samsung Galaxy is also found to be on the
top lists of the survey. Therefore, the analysis results indicate
that our work can not only help users reduce network traffic,
but also help users save phone memory.

In conclusion, our work can effectively trim mobile ap-

plications in the market and reduce the sizes of installation
packages, helping users in developing countries better use
mobile apps, and is suitable for most popular devices used
in developing regions.

The application update issue. The majority of mobile
apps are designed for bandwidth-rich regions, and devel-
opers move to release updates more frequently. In order to
reduce the data that needs to be transferred for app updates,
Google Play has used a smart update strategy for Android
apps updates since 2012 [79]. The idea of the smart update is
basically that only changes (also called deltas) to APK files
are downloaded and merged with the existing files, which
reduces the sizes of updates. In 2016, Google announced a
new additional delta algorithm bsdiff [80] for reducing the
size of app updates.

At present, research on program debloating rarely in-
deed concerned about update issues [39], [40], [42], [45].
Here, we offer insights into how our study works with app
update issues. First, it is worth mentioning that normal apps
do not update as often as expected. It has been observed that
top apps update more frequently than normal apps (apps
were randomly chosen from Google Play) [81]. There are
only 5% of normal apps had four or more updates while 45%
of top apps had four or more updates within a period of two
years. Therefore, our framework is suitable for most apps.
Second, apps are becoming more vulnerable and getting
more permission hungry over updates. The majority of API
calls related to dangerous permissions might be added to
the code in the new versions [81], [82], [83], [84]. In those
circumstances, we suggest that users should not necessarily
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always update, especially with constrained networks and
outdated devices. When the necessary updates are needed,
we are also able to provide new trimmed versions for
downloading.

Third, besides bsdiff, there are other incremental (delta)
update methods that were proposed [85], [86]. Most app
stores in China also support delta update now, such as Mi
App Store18, 360 App Store19and Wandoujia20. It is entirely
feasible in our framework that comparing the new trimmed
version of the APK with the old trimmed version of the APK
to generate the patch package for delta update. This step can
be put on the server so that users are also able to use delta
updates. We take delta update as future work to further help
users save network traffic.

Lightweight app platforms (for developing regions). We
show that WeChat mini-programs exhibit significant size
savings when compared with Android apps. Part of this
comes from mini-programs’ shared library access, as dis-
cussed in §4. This suggests that a platform for lightweight
(mobile) applications might benefit mobile users in develop-
ing regions, using WeChat’s platform as a reference. Placing
commonly used code into a shared, consistent app library
would greatly reduce code redundancy for mobile apps.

Limitations. Finally, we discuss the limitations of our
study. First, app decompilation and repacking are known
to be fragile [60]. Errors can creep into the system during
the use of reverse-engineering tools like dex2jar, Apktool
and enjarify [87]. For instance, a unknown opcode exception
was reported when we used dex2jar to translate Dalvik
bytecode to Java bytecode. This is because that most reverse-
engineering tools read bytecode linearly and the parse
process fails when encountering an invalid bytecode. Thus
developers can prevent third-party code trimming by inten-
tionally or accidentally inserting invalid bytecodes into the
Android DEX file. Similarly, steps like parsing procedure
codes can be disrupted or slowed using unexpected inputs
in procedure code. Finally, developers can always use en-
cryption or code signatures to prevent or detect alterations
to their code.

8 CONCLUSION AND FUTURE WORK

In this paper, we take an empirical approach to ana-
lyze sources of bloat in today’s mobile applications. Us-
ing WeChat mini-programs as a basis for comparison, we
were able to identify a number of potential causes for the
rapid growth in mobile app package sizes. This, in turn,
allowed us to identify techniques to significantly reduce
sizes of existing Android applications by modifying and
trimming unnecessary code and resources. Our framework
can quickly and automatically convert regular mobile apps
to lightweight apps, which can be applied at large-scale.
Developers no longer need to design and implement specific
lightweight versions of original applications.

While our techniques have demonstrated significant suc-
cess in our tests, we believe they represent only initial
steps by which developers can support mobile users in

18. https://app.mi.com/
19. http://zhushou.360.cn/
20. https://www.wandoujia.com/

developing regions. For example, our work helps to ad-
dress the challenge of downloading and updating apps in
bandwidth-constrained networks. But many mobile apps
today make strong assumptions about the availability of
network bandwidth, and either fail to operate fully under
constrained conditions, or aggressively consume bandwidth
to the detriment (and high-costs) of their users. We hope
our work and others will lead to treatment of bandwidth-
constrained networks as a first class consideration, along
with development of tools and platforms that more easily
integrate support for low-bandwidth networks into a wide-
range of mobile applications.
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